giametamatrix

MetaBase Modeler User’s Guide

Release 4.2 SP2
June 2005

© 2000-2005 MetaMatrix, Incorporated

MetaBase Modeler User’s Guide
MetaMatrix Products, Release 4.2 SP2 (Second Service Pack for Release 4.2)
Document Edition 1, June 10, 2005

© 2001-2005 MetaMatrix, Inc. All rights reserved.
You can obtain additional copies of this document by contacting MetaMatrix, Inc.

The processes and routines contained in this document are proprietary properties and trade secrets of MetaMatrix, Inc. Except as
provided by license agreement, this document cannot be duplicated, used, or disclosed for any purpose or reason, in whole or in part,
without the expressed written consent of MetaMatrix, Inc. The information within this document is subject to change without notice
and should not be construed as a commitment by MetaMatrix, Inc.

MetaMatrix Server, MetaBase, MetaBase Modeler, MetaMatrix Console, MetaMatrix QueryBuilder, and MetaMatrix Connector
Development Kit are all trademarks of MetaMatrix, Inc. All other company and product names are trademarks of their respective
owners.

If you have any questions, comments, or suggestions regarding this document, contact documentation@metamattix.com.

Table of Contents

CHAPTER 1: MODELING DATAcoovtiiiiiiintiiitinnicintesneessecssnessssessssnesesesssssesessessssnes 1
THE BUSINESS CHALLENGE ...cccuuitiitiiisssissisiss sttt bbbt 1
THE METAMATRIX SOLUTION ...teuttrtetetttrtetesetsteteseststeseseststesesettesesesessesesesessesesentssesesentssssesenestesesenesssseses 1

The MetaMAtrise SYSIEmL.....o.cuuevivieiiiiiiiiiiciciiiccc st bbb 2

CHAPTER 2: WHAT IS METADATAR? ...ttt cssressnessssscssnesennes 5
EDITING METADATA VS. EDITING DATA (.ot ettt 6
METADATA MODELSctriiieittrieieietrieieietstesesetstesesestseeseseststesesestssesese sttt ese st s sesestssesesenessesestaesseseneaesssssssses 6
BUSINESS AND TECHNICAL METADATA .c.cctrtttetttrteteueestetesetsteseseteseseetssesesesteseseetssesesessssesesessssesesensasas 6

TCCDNIA] MEAAALA. ... s 7
BUSINESS MOIAAGIA ..ottt e e 7
PHYSICAL AND VIRTUAL METADATA .coovettetrietetttreerentnereeresetseesesetssesesestssesesestssesesensssesesensssesesessssesesesssses 8
What Is An Enterprise Information SYSIEme ... ssssesseas 8
Modeling Your Enterprise INformation SYSIMS.......enierecereecireeeesiseisseisneeseesesesesessssssesssaesssaens 8
Modeling Your Enterprise Data INCOds..............c.ccuvecuniimniociiiiiciiicisicsccsiesee st 9
MODELING METADATA TRANSFORMATIONS ...cutrutututnirieueitntrtetentrtstesenestssesesesseseseessesesesessesesenessesesensases 10
Metadata TrANS[OITIALIONS.............oeceviciiciiiiiriciiicisicre e 10
SOL 1 TTANSFOITALIONS ...t 11
Mapping XML TTABSOIIMALIONS ... 11
DESIGN-TIME AND RUNTIME METADATAouttrtrietetnireetetnteeetetstseeseesteseseessesesesessesesesessesesenessesesensasas 12
De5ign-"Ti1116 MOIAUALA ...ttt ettt 12
Rtt11i1906 MELAAAL. ...ttt 12

CHAPTER 3: METAMODELS IN THE METABASE MODELER..........cccccevvnuernnuiinnnennas 13
WHAT IS A METAMODEL?Pcutrtiieteitrtrietetrtniesestststeseststssesesetsseseteeseseesassesesessssesesessssesentssssesesesssesenesesseses 13
METAMODELS IN THE METABASE MODELER.....cc.cttrtrietetntreetetrtsee ettt sesesteseesessesesenessesesenenes 14
METAMODEL EXTENSIBILITY c..vveutrtrieteutrtrterestrertesesestssesesesesseseseessesesessssesesessssesesesssesentssssesesessssesesesssseses 14
AVAILABLE METAMODEL TYPESveteteteieteteteieieteteteiesesesesesesesesesesssssesssssssesesssssssssssssssssssessnssssssssssssssssnens 15

The Relational Metamodel...................ccccviciniiiniiiniiiniiiniiisiisisseses ettt 16
The Data Access Metamoe..................ccuvicunicuviiiiiiiiiniicnicsicsie st 17
T8 XML VEEAPIOTELS ...ttt 17
ChHOOSING A MELAMIOUE ...ttt ettt 18

CHAPTER 4: GETTING STARTED WITH THE METABASE MODELER..................... 19
WHAT IS THE METABASE MODELER?....c.coiiettitntrieretntnieretntniesestsesaesetsessesesesessesesensssesesensssesesessssesesesssses 19
USING THE METABASE MODELER WORKSPACEc.citrieteuitreetetntseeieertseeseesteseseesteseesessesesenessesesenenes 20

Modeling Metadata LOCallyc.coveeceeueninicionninicccieininicieirnecesesiee e ssestsssess s esesssessassesessessasaen 20
Opening the MetaBase Modeler Workspace Windomw ... 20
Viewing the MetaBase Modeler Workspace WinGom ... 21
W OrkSpaces and PrOJEcts...........c.ccuveeuviuimviiiiiiiciiiciiiciecce ettt 24
MODELING YOUR METADATA ..eitttttttrtrteteteteieietstsaeietststesestt st seseatesese st sesesesesesesenessseseneasssesesensssesanens 25

CHAPTER 5: CREATING METADATA MODELS........ccocceiniiiniiiiieiirinitenniecneesseenens 27
CREATE A PROJECT ittt sttt st ettt sttt et et e et et e st et ek e st st bebese st et ebese e ebebeae e sbebesetssebeseassenenes 27
CREATING A NEW PHYSICAL MODE L ...cetrtiiririririeieieieieieieieieieieieseieiesesesesesesesesesesesesesesesesesessssnsasssssnsnens 28
CREATING A NEW VIRTUAL IMODEL.....cctrttueuitrieteueirteieietetetesesteseseses et se e tssesesentssesesessssesesensesesesessesesens 30
CREATING A NEW VIRTUAL MODEL FROM AN EXISTING MODELccoovuminiiiinieisineiisisisissenens 32
COPYING AN EXISTING WORKSPACE MODEL.....euvuriririririeieieieieieieieieieieieseseseseseseseseseneseesesesesesesesenssenens 34
CLOSING A PROJECT w..oooovveeeeeeeeeseeeseseeeese e es e ssseessssssssssssssssssssssosssessnes 35

i

amatrix

CHAPTER 6: IMPORTING METADATAL.......viiiiiiiteeeteiniineeeeecesssssaneeeessssssssssseesesss 37

THE METADATA IMPORT WIZARD ...ctrtriririririririrtrtstststststststsestststetetetetetetesesetesesesesesesesesesesesesesesesesesesesenes 37
PUBDOSE OF 1hE WIZAFA ..ottt sttt 37
Import Plug-in EXIENSIDITLY ..ot 37

IMPORTING AN XML SCHEMA DOCUMENT ..ottt sttt ssssnes 33

IMPORTING FROM A METAMATRIX MODEL FILE ...cuoitiiiiiniriiieitrieieentrieecteeee ettt 40

QUICK IMPORT AND COPY OF EXISTING METAMODELS AND XML SCHEMA DOCUMENTS........42
COPY ANd Paste MEIDOU. ...ttt s 42

IMPORTING FROM A JDBC DATABASE ..ottt sesanas 44
Using the Metadata Import WIZAIAc.coeueeeeeenecinicinicnicnicnecneenee e ssesesseacs 44

IMPORTER FOR ERWIN 3.5.2 MODELScctrriettutrenieretnerieretneneeretstssesestsessesestssesesestssesesessssesesessssesesensssns 55

IMPORTER FOR RATIONAL ROSE MODELScucutririeitiinirieieitntreeieestsee et sae ettt seee e sessete e e s e senenas 58
Adding Relationships 10 UMIL NOeLs..............cueecuveeureerreiieeeieeieneieseieineeseieseeneieiseeessesesses e ssesesneaes 63

CONNECTION INFORMATION IN METADATA MODELS ..ottt eeenene 68
Connection-Related Meta OUJECtsoueucuveeeuveeeueeeeueeneieeneienieneeneie e ssesssessssenns 68
Refreshing Metadatacececuiecuiuciniiciniciniiinicisiciece sttt 68

CHAPTER 7: NAVIGATING METADATA.......ccoivtiiiitiiiitiniiniecinre e cesneecssssseens 69

NAVIGATING THE MODEL/EXPLORER TREEovuriiriirireeiicisnssisiss s ssssssssssssssssssssssssssssnses 69
Buttons in the Model EXPIOTEr 1 Iem ...ttt esesssss s ssae st ssaessaees 69
Tcons in the Model EXPIOTEr T Iem ...t saes 70

CHAPTER 8: CREATING USER-DEFINED DATATYPES........ccccovviniininiirinreenneennns 71

WHAT ARE DATATYPES? ..ttt ettt et te ettt ettt bt st eb ettt ebe st st bebe e st ebebene st sbebenetesenas 71

BUILT-IN DATATYPES ..ovetetrieteinerieretrtsieietstseesetsessesetstssesestssssese st sesesestssesesesesesesessseseseatssssestaessesessacsens 72

BUILT-IN DATATYPES WITH RUNTIME TYPES ...ttt ettt tete e sessetesesessesesenenas 73

DATATYPE DEFINITIONS ..otrtiieuttrieiertrereereseeneeseseesessesestsessesestsssesestssssesestssesesesesesesentssssesestssssesesessssesenen 74
ANMYURL oottt s 74
DASCOABINATY ettt ettt st et 74
DEGACCIINGL ...ttt e e 74
BUGIHIEGET ..t 75
DIOD..ceoeevi s 75
DOOSAN. ... s 75
DYIC vttt sttt eaeae 75
CDAT .ottt bbb 76
CLOD .o 76
ALttt ettt ettt nas 76
ALETIE ..o 76
BOCUMAL et 77
QOUDIE oottt 77
GUTALIOMN ..ottt 77
EINTTITIES .ot b bbb bbb 78
EINTTTY oottt s bbb s 78
JIOAL .o 78
FD @Y.ttt 79
GIVIOND .. bbb 79
GVIONIDIDAY ...ttt b 79
GYCAT oottt s e n e 79
LY CATMONED ..o b 80
DEXBIATY .ottt st es 80
ID i 80

IDREES oottt s s 81
OO OO OO OSSOSO TSRO TOP OO 81
THBEET vt 81
ANGUAGE ettt ettt sttt ettt es 81
JOMGreiiiii bbb 82
INGIZZE .t 82
INCINGIIC. ...ttt bbb bbb 82
PIGATIVELNIETEN .. e e ne 82
INMTOKEN .ottt bbb b 83
INMTOKENS ..ottt s s s 83
HONINCGALIVEINIQIEN ...t 83
HONPOSTHVCINIEGEN ...t bbb 83
OFIRALIZEASIIING. ..o 84
INOTATION ..ttt bbb bbb 84
OUJECT oottt e et n et 84
POSTEIVCINIEZEN ... 84
LOINGIE ottt ettt st e ettt 85
SDOTE ot 85
STFING..cveveveneneneieieieieie e e e e e nene 85
BUITI ottt 85
FIESTAIID ...ttt bbb bbbt 86
FOREI «.vovvovvrvreninsiis s R R R 86
UNSIGHEABYIE ..ottt ettt 86
HBSTGNCAINE ..ottt ettt sttt ettt es 86
UNSIGNEALLONG ettt ettt e sttt eeaes 87
HISTGNCAS DOttt ettt sttt nes 87
USER-DEFINED D ATATYPES....c.titrtttettirtetetetrteietetsteteietststeseseststeseestesesesesseseseessesesensssssesenestssesesessssesenens 88
WHY CREATE USER-DEFINED DATATYPES?...cciititiiririeieirireeieientsieiesentste e seteae e estssesesestssesesesessesesensnes 88
Formalizing a Data DIctionary ... saessaens 88
Describing Data Rules i1 Detail................coucuviviiiuiiiiiiciiiiiiicicsiicicssisse s 88
ReUSING DALAIYPES ..ottt s 89
CREATING USER-DEFINED DATATYPES ...ttt sttt seesteteests e se e st sete et besenessesene 89
Deriving from Butlf-In DAtaiPes............ccccuveucuvicmniciriciricisicisiesisisees s sssassesans 89
Deriving from Other User-Defined Datarypesccveeureeeeveneseneeenecenieseeseesseesseessescssesessssssssesssaens 89
MODELING THE USER-DEFINED DATATYPES.....cevosiiiiiitniiniininisissiesis st 90
Creating the Datatype MOdel ...ttt 90
CHAPTER 9: CREATING AND EDITING META OBJECTSccocvuiiiiiiriinniieiinnenennns 92
CREATING META OBJECTS euttrtiririrerirtrtststststststststststststststssstssssssssssssesssssssesesssssesesesesesesesesesesesesesesesesesesens 92
CREATING META OBJECTS ON THE MODEL EXPLORER VIEWoorvveoervieoeereeeeessesesessssesessseeseseons 93
VIEWING META OBJECTS IN THE TABLE EDITORcoovtviriririririririresesisesestseseeeteeeeeieteeeeetete et sesesesenenes 94
USING 1D TADIE FEIION ..ottt 94
Editing Meta Objects in the Table EdiE0r.........cucuveveeeeieiricciiirniccenireceesiseseeesessesessensesessesenes 95
Creating Meta Objects 111 1he TabIe EIIOTcoeecueeciiciiiieecrecseenecreerees e 96
Pasting 19110 1he TaDle EEII0N ..ottt saen 98
Table Editor Colummn Sorting and HIGINGc.ceveeeervininiccneiinicciinincceienieeenseeieeseeee e sesseneas 99
EDITING META OBJECT PROPERTIESo.vveorveeevveesesssssesss 101
MaLerIQlIZEd VIS ... 102
RE5201e Dfastlt TV AIES..........cecueiiiiiiciiiiiciciiiiicicitcct s 102
ifi

MANIPULATING META OBJECTS w..oovvonrverisessssssssssssssssssssssessnssens 102

What is the CHPDOAIL..............ccovveuiciiiiiiiiiiiiiiicst sttt 103
CHUIEING MEIA ODJECTS ...ttt 103
COPYING MEIA OBJECES ..ot 103
CLONING MEIA OUJECIS..veneieiiriicieiririeeiereec ettt et ettt nees 103
Pasting Meta ODJEctsuuvoiiecuiiiiiiiiiiiiiiciciciitc sttt 104
REOPACHING MEIA OUJECIS .ottt ettt e sa st sessasae 104
CHAPTER 10: ADDING DESCRIPTIONS TO META OBJECTScccoceevntirnneinnecnuecnns 105
CHAPTER 11: USING DIAGRAMS IN THE METABASE MODELER.........ccccceeuveruennn. 107
WHAT ARE DIAGRAMS? ...vtiitiiiiittnitis sttt 107
What is @ Package DIAGramie...........ccveveeveeueuveneccecreenenicerseniecsessenesiessssesesssessasessaesessesssssemssessssessacses 107
What is a Transformation Diagranmiz..................cininccicininiccssissssssisse s 107
What is a Dependency DIQrapmie............ceecereeereeureceirisereeeireseseesessessssssssessssessssessssesssssssesssaesseassseans 108
What is a Mapping Diagramie...............cveveeiveiuvenisiisiisiesiesisssssssssesss s 108
What is an XML Transformation Diagranme..................cviniiocicinininccisisisiscssissssssssssssinens 108
What is @ Custons DIGGIamse...........cvccucevenenecuvrinicereriseesieeessesesiessesessaesessessassessesessassssessssessacses 109
VIEWING A DITAGRAM ..ottt ettt ettt ettt et ettt ettt b etttk ettt b ettt ebe et bebene e eee 109
OPENING @ DIAGEANI ... 109
Diagramming TASRS ...t s 110
COMPONENTS OF THE DIAGRAM ...ttt ettt tetetebesetesesesesesesesesenas 110
IIOELS ... 110
Categories, SDema, and CAIAIOZSc.eeceeecureciriccirieirieirieiseeis ettt snaens 110
Groups, Base Tables, and VIems ... sas 111
Virtnal Groups, Base Tables, and UV Iemwsc.cvccveecrncrneeneenieneeneeseeseeis e s sseneaenneaes 111
MAPPING CUASSES ettt 111
Staging Tables for XIMIL DOCUIIENESc.oceveeeeeieerierieiricseeis e e sessssaeseaes 112
PrOCOAUTES ... 112
THPUE SELS ot 113
ELerntents Gnd COMMINS ...ttt sttt 113
PFIIATY KPS .ottt ettt ettt st 113
FOPCIGI KEYS ..o 113
URIGUE CONSITAINLS...ce.veveeeiiciiciieisieis ettt 114
ACCESS PAITEITIS ..ottt 114
LIRS oot 114
TTABSFOITHIALION ...t 116
XMIL FTGIMIENT LN oottt ssatas et st s st seesensacsenen 116
XML MaPPIHG LB ...t s 116
NAVIGATING THE DTAGRAM ...uttriititttristetetst ettt ettt sttt be et sttt st be et bebese st ebebesentssebenensesesas 117
The Outline View and Diagrans THUmDNatLccucoveecucrvninecrerninieereninieersneseenessesesseseesessnes 117
CHAPTER 12: MODELING DATA IN A DIAGRAMccivvtiiiiniirininieinnneecnnneeesnseees 119
CREATING META OBJECTS IN THE DIAGRAMo.ovooevveereeeeseeeseseeseesesssssesesssssssessssssssssssssssnssnsones 119
Creating a New Package in the Editor Panel Viem...........iinininiiiicisissssissens 119
Creating a New Class in the Editor Panel 1wc.c.cveccreereniccerennieccenincseresesesesessesesesesnenes 120
Creating a New Attribute in the Editor Panel 1 iewcveveveeerecereccireecineneisneeneeseeseeseesseesnens 122
CREATING RELATIONSHIPS...c.cvettuttrteteitrtetetetsteteteststeseseststesesestssesesentasesesentasesesentssesesentasesesessssesenenssseses 124
CREATING CUSTOM DIAGRAMS ...ttt sttt ettt bbb tebetebebebesesesesesesesesenas 125
Creating and Populating a Blank Custons Diagrant..............ivivinniniinisisienssssisisnessssasinns 125
Creating a New Custom Diagram from a Model 01 Table....................c.cocvueuviniviniviniciicinicivicsinccins 127

CHAPTER 13: MODELING TRANSFORMATIONS.......ccccctttiiiinmrneeccininnnneeeecessssssneneees 129

WHAT IS VIRTUAL METADATA? ...cotitrieietttreeieeetrteiesetsteseseseseseeseststssesesesssesesesssesesensssesenessssesenessseseseaes 129
METADATA ABSTRACTION IN THE MODELER ...c.cucttiietiieieieieresnisssesssesssessssesssssssssssssssssssssssssssns 130
VIRTUAL ATTRIBUTES «.ttrtrtrtrtrtrtrtrtreststseststststststststststststststststststesstssesesssssens 131
Basic Virthal ABIDUIES ...ttt 131
TTANSTOTIIING ALIFIDULES ettt ettt saees 132
VIRTUAL CLASSES....oiuiiiitsiissississississs st 132
Creating Views with Virtnal ClASSES..........couovcucuviviiiiiiiiiiiiiiiiiecciccc s 133
Creating Unions with Virthal CIASSEScecceuvrinecreirrieeciensisisciesseneeeessesessesessesessaesessessesessacseses 134
VIRTUAL METADATA AND DATA ACCESS....ctiiieieieieieieieieieieieieieieieseiesesesesesssssesssssssessssssssssssssssssssssnssens 135
Integration with 1he MetaVAITIN SEIVEE.........coevecueuvovnicereiririteeirieceieess et esseneasessaenes 135
Integration with the MetalMatrixe XA Server........ccvininiiiiiiniiccisisisc s 135
CREATING A TRANSFORMATION.....ceutteuttrteteuentrtetenetrtesesetesesesenteseseseteseseseteseseneteseseneasesesenessssesenessasas 136
Creating a Simple Transformation ... sssaens 136
Creating a Union TraNSJOIMALIONc.covvecereeereceriereeireereeiseeiseecises et ssss et ssssssaessaessaes 137
USING THE TRANSFORMATION EDITORcutuiuiuiuieiiieieieiniainintaeseeeseeeseeseesessesssssssssssssssssssssssssssssses 139
Enabling or Disabling Transformation TYDES.........ccereereceureccuneeciriseisineisseeseeseeseesseaessesessesessesssaees 140
Remroving Transformation SOUTCes................cviviniciniciiciiciiiciicscs e 141
USing 1he CrIEHIA BUIIET ...ttt 141
Using the EXPression BUIAEEccccovciviciviciiiiiiiniiiiniinicnicrec s 144
EXpanding a Select CLANSeeccuiciieciiciiciiiciiicicicsies e 148
Searching and Replacing i @ TranSformation............cwccereccreceureccureeeusenciseseiseseisesesessesessssessesessensaessenes 149
Validating Y our Transformation. ...t 150
Reconciling Target ATIDUIESocoiicucuiiiiniiiiiiiiiiiccs st 151
Setting Transformation Editor Preferences................vivnininiciniciricisicisincsinesiseessee e 153
Using Short SQL SYmmBoL INGIIESooucuuviiiiiiiiiicicicisisicicc it 153
PROCEDURAL-TO-RELATIONAL MAPPINGocoritriiniiiiitnietisisisiisissis bbb 154
CREATING PROCEDURES FOR UPDATES ...veuttititeuetrtrieietrtsiesetstesesetstetesestssesesestssssesestssssesesessesesensanns 154
How an Update Procednre WOrs ... sssssssssssssesnns 155
Procedure Langnage Basic STIHUCIUTEc.cuvevevecuereininieereiriiceteeseeeiessesisee e sessesessaesesaesessensasaen 156
PrOCOAUTE STATEIIENLS ottt ettt 156
SPCCIAL U QIIADIES ..t 158
Processing SOL Criteria in a User’s COmmand.............cueeneeeneeneenecireceineeciseseieeneseessseesesesneeneanenns 159
A SAIPLE PrOCOAUTC ...ttt 160
USE DJAUIE PYOCCAUTE ...ttt et st 163
VIRTUAL PROCEDURES ...cvtttririeieitrtnieieetrtneesestsestesesttsteseseesseseessssesesessssesesessssesenessssesesesssesentasssesessees 164
Virtual Procedure Langnage Basic STUCTUTEc.covuevecueuvinivereiririicietrnicciensiniesiesseseseeeseesesenessaenes 165
Statements Not Used i1t VirthaL PROCOAUTES..........ecueeeueeereiienierieiricrecireeeiseseieseie e sneaes 165
Statements Used in Virthal PrOCCAUTescocuvuiviiciiciiciiiciiiiinicsicnicsec s 165
Processing Procedre INPUISc.eecuvecuveeueeneeenicnienee e saseae s sssaeseeaes 168
Sample Virthal PrOeaUTescuveiuviiuviiciiciiciicicicsee st 168
ADDING DUPLICATE OBJECTS TO A TRANSFORMATION DIAGRAMoooovveeoeeeesereeseeeseseeesssnens 169
VIEWING DEPENDENCY DIAGRAMS.....cctrtrieieirtniereintrieretststeseststssereseestesesessssesesessssesenessssesesesssesesenes 171
CHAPTER 14: MAPPING OTHER DATA SOURCES TO XMLcccoovtvnrrernnecnsnncnsnnenes 173
WHY MAP NON-XMI SOURCES TO XML ...ttt ettt ettt sees 173
XML SCHEMA AND XML DOCUMENTSccevtttitiiutiteieteteeitiesentseststeseseesesestestssessssssssssssssssssssssssssssssses 173
T8 TYPES Of XIVILL FES ettt ittt 173
XML Files and Metadata MOGELsccvuiuviniiiiniiiiniiiiniiinicinieineseeeees s sssessaes 174
MAPPING SOURCES TO XML DOCUMENTScutrtrieueuiririeieitntsieietntseesesesteseeststesesesessesesesessssesenessesesenes 175

\'/

USING XML SCHEMA FILES AND DOCUMENTS.cuetrtrieieitntrieieitntsieieiertseeeesteseseestesesesessesesenessesesenes 176

Importing XML Schema Metadata..................c.cccuvicunicinicinicinicinicnicnicssissecses s 176
Creating an XML Schema Metadata NModelceoeeueoneevoneeeieineieneeneeneeseesee e eeseenees 176
CREATING A VIRTUAL XML DOCUMENT MODEL....ceuvtrtririririririririreriresesisisesisisssesesessssssssesssesssesesenes 177
Creating New Models from XIMIL SHema ... ssaesas 177
Creating a Linited DOCUENT MOGEL..............oecueecoeeciiciricirieiricirieisieeie et ssaees 180
Creating a Simple XML DOCUIIENToeeveecuriciiciiciriciicisiesiesie e ssaees 183
Working With XML Doctnent MOGels. ... 183
IDENTIFYING NAMESPACES.c.cctritetttrieteretrteiesetstsseseatsesseseststssesesesssesesessssesesessssesesessssesesessssesesesssseses 184
Nanespacing for GloDal ELMEntsc.cecuciviviiciiiiiniiiciiisiiiccsiscsse s 185
Namespacing for Local BLMENEScocuvicuviciviciiieisinisinessie st ssaesssaessaes 185
Defastlt INGIIESPACe. ...ttt 186
Namespace with DOClared Prefix..........ccecuveeeveneeenienieneeneeneeseeis et esssssss s ssssesssonsaessssesssaees 186
Qualification with Defanlt INGIIESPACES...............cewcuvieevieiriiiiiiiiiniicisie et saes 187
AU ELtnts QUAIAIEA. ...ttt sseaes 187
WHAT ARE MAPPING DIAGRAMS?.....oviiiriiiiiisiiississis ittt 188
Reviewing a Mapping Diagrans..................ccvicciiininicininiicisisinscssissse s 188
Reviewing an XML Transformation Diagrami....................ccnicinicirincunencsinesinessssssaesesssssans 189
USING MAPPING CLASSES ...tteteuiutrieteuttrtetetetsteteteststeseseststetesestssesesesessetesestseseseneasesesentssesesenessssesenessaseses 190
Automatically Generating Mapping LIRRSc.ccuvecuvicuricuvinciriseisieisieisieisisesieisissss s 190
AdAing @ Mapping Class.........ccuveeuvicuvicuniiiiiciiiiisicsiesesie s ssaes 191
Merging Mapping CUASSESocucucuvieecucuriniiiciiiiiiisicsisisc s b 191
SPLit1iNG MAPPING CIASSES ettt 193
Deleting Mapping CIASSESowwucucuvinicuciiisiiiciciiisisicissisiss st 193
Adding Attributes 10 MapPing CIASSESucevuceeuceiuciriciiieiiiniisineisineis st 194
Deleting Attributes from Mapping CIASSEScuveuwvucuvinioiciiiriiiiciiiiicicisiis s 194
REPEATING TAGS IN XML WITHOUT MAPPING CLASSEScutututuiuieinieritmiieeeeeeeeeeeesesesesesenes 195
CREATING TRANSFORMATIONS AND MAPPINGS....cccrueueuiririeretntrietetntesesestntetesesestesesesessesesesessssesenessns 197
Creating XML TTanSformationsweveeeveseveneeneeereeesesiseesseessesssesessesssssssssssssssssssssssssessssssssaees 197
USING THE INPUT SET ..ttt ettt ettt sttt s st st sesssssssssssssesssesesssesesesesesesesesesesens 198
Role 0f 156 INP1E St ettt 198
Using the Input Set ELIOroovuveiuciieciiciiciiicicicciscisseeee et 199
USING THE RECURSION EDITOR ...utiitiieteiinirieieirteieietst ettt setstete et seestssesese st s besesessesenensssesenenes 200
Handling Recirsive XML SCHOMAoecuervereeeierririieieiriiceiesieeiessesieeiesseseeese e sesseseasesessasnes 200
USing 1he RECHTSION FEGIO ..ottt sneaes 201
USING THE CHOICE EDITOR ..ottt sttt bbbt 202
Opening the ChOIe FELL0rocueeiiciiiiiiiiiiiiciieie ettt 202
EXCIUAING OPLIONS ettt sttt saes 203
Edi111g 1he ChHOICE CTILEIIA vttt ss et e ss s ssensasaen 204
Se11ing Choice EIement OFGr.......cveneuveneeeerieenicireeireeiriesiseie e sss e sssaesneaes 204
Setting a Defanlt ChOce ACHON.ccuvvucuviiuviiiiiiiiciicric e 205
USING A STAGING TABLE....cottttuitrietetttrtetetestst ettt et etst sttt et be sttt b et sebebene st ebebene st ebebenestesebenetesesas 205
Improving Data Access with Saging Tables..............ccvcuviiiviniciniiinicinicinicnicsiienccsccscessee e 205
USING STAGING TADLIES ..ottt 205
Creating @ STAGING TADIEeceeeeeeeiiciieiricireciereete ettt taes 206
Populating a S1aging Tablecocveeuveniiiiiniiiiiiicinicisiciicsicrcc et 207
Using Input Sets with SIAGING TADIES........eveceeeceeeiriciriecisiseieneieneeree et 207
Using Staging Tables in XIVIL TTGHS[OIMIAIIONS...........cocuvecuviniiviniieiniciriciricisicsieisnesssiessie e 208
Removing @ S1AGING TADLo.........oeeueeeeeeeeceeciicicinicse ettt 208
Deleting a S1AZING TaADo...ecuouenceeecneiiicieieiriiceieteer ettt et 208

CHAPTER 15: CREATING A VIRTUAL DATABASEovvvtetiiiiirrneeeeiininnneeeecsssssnnnee 209

CREATING A VIRTUAL DATABASE DEFINITIONcovitetiiietereisiesesetsiesesesessesessssssesessssssesessssssesesessssns 209
SYRODTONIZING. et 213
CHAPTER 16: MODELING FOR INFORMATION INTEGRATION........cccoevvivuveinnnnne 215
SPECIAL CONSIDERATIONS FOR INFORMATION INTEGRATIONoovuiiiriniiiieininiiesisisis e 215
ESTABLISHING ACCESS PATTERNS ...ocviiiiiiniiniitiiisiss s 215
What is an Access Pattern? ...ttt ssssssssaes 215
Inserting an Access Pattersn Meta ODJectoucuviiicuciviniiiiiiiiisiiccisisicc st 216
CREATING PROCEDURESoovitiiirittisssisiissssssisesissss sttt 217
A SAIIPLE PROCCAUTE ...ttt et 218
MOGEIING @ PFOCCAUTE ..ottt st ettt 219
CHAPTER 17: USING THE METADATA TOOLSccoovvtiiiiiiriiniieiitneecneeccnnneeenns 221
VIEWING DATATYPES ..ottt ettt ettt et ettt et ebe sttt b et st tebe et bebe st st sbebese st bebene st esebeneates 221
Viewing the Data DICHIONATY...........cucoveneeecierririiciersinitcietsinieciesseseeeiessesesssesessesessaesesseseasnsassessssensasaos 221
ERROR ANALYSIS AND REBUILDING THE PROJECTvooveoeeeeeeeeeesesesseesssessssssessssssssssssssssssssssens 222
SCtting V alidation Preferenices ... cevnievieeriniciereniicessiseecsessesesesessestseessssesessasessassessssessasaes 223
Mannal EFror ARGIYSIS.........cuoveveiiiiiiiiiiiiiiiiiccisiicc st 224
COMPARING A MODEL TO ITS LAST SAVE w.ooiiiiiriiiniiniisisississisississis s ssssnns 225
MODELER COMMAND LINE APPLICATIONccttuierereeresrersssrssssssnssssssssessssssssssssssssssssssssssssssssssssess 226
COMPATING IMOGELS ...t 226
Refreshing 1mported MOGELsocoeecuieciviiiviiiiiiiiiiiiieie et 227
CHAPTER 18: MANAGING THE WORKSPACEccevirtiriiiniiiitiiecnierecnneeccsnneecens 229
EXPORTING DL MODELSocvttririeittrinieteentnieretstseeseatseseesetsessesesetssesesessssesesessssesesessssesesesssseseseesseses 229
Excporting a DDILL File.......cciiiiiiiiiiiiiiiiicciiiccii s s 229
EDITING USER PREFERENCES......ccuetttrtrietetrtnietetnteteretnessesetsessesetstesesesessesesessssesesessssesesessssesenesssseseseaes 231
Editing GeNETAL PrEferenes.........cueecuveeuveseeeereeniereeerie ettt ssaens 231
Editing Debng Preferenices......cucuveneevecreureniecreirinisceiensiseeesesseseseessesessesessastsssesessasessssesesseseasaesessences 232
Editing Diagranms Preferences ... eenienicinicnecisieseeseeiseseis s ssssessesssaessssesssaees 233
Editing Editors Preferenies ... ueeeueenieirecinieinecirieisieieseieseeeseie ettt saesssaessaes 234
Editing V alidation Preferenies..... . cncenniccerresiecereenintsesessesesiessssessassessssesseesessesesseseasaesessences 235
Preferences Tabs from PIUG-in5 ...t 235
CHAPTER 19: METABASE REPOSITORY AND THE TEAM REPOSITORY.............. 237
SHARING PROJECTS AND FILES ...ttt ettt ettt ettt ettt ettt e s b beneneenas 237
The MetaBase Repository 1V Tem ...ttt ssaes 237
SHAring @ Project 08 MOGeL.............cueecuveeuveeueeiieeicinieree et seaes 239
UNSDATING @ POJECE ettt ettt sttt sessentasae 240
Adding a Project or Model to a Shared Team Repository ... 241

Gt 196 Latest 1 OrSI0Nuuuiiiiciiiiiiiciciiiiiie ettt 243
Checking Models and Projects Ont and Back In to the Team Repository...........cvvevevivenicenicinicuvincnnenne. 244
Showing Tteration HISIOTIES ...t 246
ROPOSIIOTY PFOPEFIIES ..o 247
APPENDIX A: MODELING USER-DEFINED FUNCTIONSccoovcvnniinnneennnecninecnns 249
vii

APPENDIX B: EXTENDING METAMODELSoovnvetiiiiiintneeciinineeeeecsscssmmeneeeees 251

WHAT IS A METAMODEL EXTENSION?....ccurtetttrtriereentriereaeneriesestsessesesesessesesessssesesessssesesessssesenessssesesenes 251
CREATING AN EXTENSION IMODELcciiieieteeisieiereeeessesessesessessesessessssessesessessssessssessessssessssessssessesesseses 251
Adding a Class Exctension to the EXtension MOlcecucuveneeccueineninccrvinniccsnineceneninesensenenes 252
Adding Attributes 10 the Class EEXIENSIONueucecuervericeeierririiciereirieciesseniseeieseaseseesesessessesesessessesessaenes 255
Creating an Exctension ENUmMEration ... s 256
APPLYING AN EXTENSION MODEL TO A METADATA MODEL.......ovviiininiinineinsineicscnsinsne e 258
METAMODEL EXTENSIONS IN THE SERVER......ccicetieieterteresteresseseesessesessesessessesessesessessssessssessessssensns 259
APPENDIX C: JDBC IMPORTS AND BUILT-IN DATATYPES.......ccccovvuiiirinniiininnnecennns 261
THE SIGNIFICANCE OF DATATYPES IN AN IMPORTED JDBC DATABASE.......vocoeervvvesnrssssssnnennns 261
APPENDIX D: MODEL PROPERTY VALUES........cccviniiininiiinnecennecennneessssneesnes 265
FILE/MODEL PROPERTIES ...t ees st seeseeeseeseeseessesseeseseessessesesssssessesseseassessessessessessesseesesssessenes 265
RELATIONAL MODEL PROPERTIES......ccvetitetetintetistesesseeesessesessessssessesessessssessesessesessessssessesessesessessssensens 265
RELATIONSHIP MODEL PROPERTIEScvviteiiretinesinesinessesessese s sssssss st ssss s s ssse s s senes 267
XML DOCUMENT MODEL PROPERTIES......cectititetirterisseressesesressesessesessessssessesessessssessssessesessesessessssessens 268
XML SCHEMA MODEL PROPERTIEScvcuvtrtsieeriniereseistesesetssesesasessesesessssesessssssesesessssesesessssesesssssseseseses 268
PERSON MODEL PROPERTIES.....ccveirtettsteeeetesieressesessesessessesessesessessesessesessessssessesessessssessssessessssessssessssensens 270
APPENDIX E: MODELING GENERIC RELATIONSHIPSccccccevnuiiininnieininnnceninne 271
INTRODUCTION TO GENERIC RELATIONSHIPSceeteieteieresieresseeesesseessesessessssessesessessssessesessesessesens 271
LOGICAL AND PHYSICAL METADATA FROM ERWINcooviiiriiieiieiiesce s 271
RELATIONSHIP NAVIGATOR VIEW ..ctrtrietiuiririereirtniesetneeseseststssesetsessesesestssesesssesesesssesesessssesesesssesesenes 272
CREATING GENERIC RELATTIONSHIPScuteveiiteteristereereeesessesessessssessesessessssessesessessssessssessesessessssessesenes 273

Chapter 1:
Modeling Data

THE BUSINESS CHALLENGE

Many organizations have come to depend on numerous sources of information for their daily operation.
Different departments and divisions within a company might have developed their own information
technology solutions. Two companies with different IT philosophies may have merged. There are many
reasons why a business may find itself struggling to tie together disparate information sources, such as
Relational databases, inventory management systems, and/or legacy systems. As businesses become
interconnected through the Internet, networking technologies, and partnerships, there are more sources of
information available to an enterprise.

Your organization faces the challenge of using all of its information sources to their full potential.
Attempting to catalog exactly what information lies within a jumble of enterprise information systems can
clutter many white boards and notebooks.

In many cases, it makes perfect sense for different areas of your enterprise to use different applications to
access multiple individual enterprise information systems. But as the number of enterprise information
systems in your business increases, the number of the applications you use to get information can increase
as well. This web of applications can decrease your day-to-day business operation efficiency as you navigate
multiple information sources.

The challenge that faces your organization is organizing the complex and often interrelated sources of
information needed to compete and remain efficient.

THE METAMATRIX SOLUTION

The MetaMatrix System (comprised of the MetaMatrix Server and the MetaBase metadata management
system) offers your organization a way to manage and describe the information across your disparate
enterprise information systems. You can even integrate these enterprise information systems into a single,
complete data access solution using the MetaMatrix Server.

Modeling Data
The MetaMatrix Solution

The MetaMatrix System

The entire MetaMatrix System is comprised of several interconnected products and services:

MetaBase

Modeler Console E
o g i

User Applications

= QueryBuilder

Reporting
Applications

MetaBase Server

Connector
Development

XA Server Kit
o &
4 N E

A |

MetaBase
Repository A A

Ww
e

Enterprise Information System

The MetaMatrix System, when used in its totality, enables your end user applications to process queries
that select (and even update) data from one or more of your enterprise information sources, regardless of
the native physical data storage method used by each enterprise information system. This means that a single
query can access, reference, and return results from multiple integrated data sources.

Within the MetaMatrix System, the MetaBase products (including the MetaBase Modeler, the MetaBase
Server, and the MetaBase Repository), enable you to create and manage metadata models: representations
describing the nature and content of your enterprise information systems.

Once captured, this valuable metadata can be searched, analyzed, and applied by applications throughout
your enterprise.

2 MetaBase Modeler User’s Guide, Release 4.2 SP2

Modeling User-Defined Functions
The MetaMatrix Solution

These metamodels can be deployed to the MetaMatrix Server. The server can use the metadata at runtime
to:

* Process queries posed by the user application of your choice
* Retrieve from the information source(s) of your choice
* Return the integrated results in the information format of your choice

The MetaMatrix Server parses queries based upon the metadata information and distributes the subqueries
to the appropriate enterprise information system(s) through Connectors. These connectors are Java classes
that translate queries into the enterprise information system’s native application programming interface
(API). Once the various enterprise information systems return the data results, the MetaMatrix Server
reassembles and returns those results to the client application of your choice.

amatrix’ 3

Modeling Data

The MetaMatrix Solution
___|

4 MetaBase Modeler User’s Guide, Release 4.2 SP2

Chapter 2:
What is Metadata?

Metadata is data about data. A piece of metadata, called a meta object in the MetaMatrix MetaBase Modeler,
contains information about a specific information s#ucture, irrespective of whatever individual data fields
that may comprise that structure.

Let’s use the example of a very basic database, an address book. Within your address book you certainly
have a field or column for the ZIP code (or postal code number). Assuming that the address book services

addresses within the United States, you can surmise the following about the column or field for the ZIP
code:

* Named ZIPCode

¢ Numeric

* Astring

* Nine characters long

e Located in the StreetAddress table.

* Comprised of two parts: The first five digits represent the five ZIP code numbers, the final
four represent the ZIP Plus Four digits if available, or 0000 if not.

* TFormatted only in integer numeric characters. Errors will result if formatted as 631410.00 or
6314q0000.

This definition represents metadata about the ZIP code data in the address book database. It abstracts
information from the database itself and becomes useful to describe the content of your enterprise
information systems and to determine how a column in one enterprise information source relates to
another, and how those two columns could be used together for a new purpose.

You can think of this metadata in several contexts:

* What information does the metadata contain? For more information, see “Business and
Technical Metadata.”

* What data does the metadata represent? For more information, see “Physical and Virtual
Metadata.”

* How will my organization use and manage this metadata? For more information, see “Design-
Time and Runtime Metadata.”

What is Metadata?
Editing Metadata Vs. Editing Data

EDITING METADATA VS. EDITING DATA

The MetaBase Modeler helps you to create a graphic representation of your data. This abstracted, graphic
representation defines and describes the structure and layout of your data in the original data sources. It also
describes whether those data sources are composed of Relational databases, text files, data streams, legacy
database systems, or some other information type.

The MetaBase Modeler creates, edits, and links these graphically-represented meta objects that are really a
description of your data, and not the data itself. So when this documentation describes the process of creating,
deleting, or editing these meta objects, remember that you are not, in fact, modifying the underlying data.

METADATA MODELS

A metadata model represents a collection of metadata information that describes a complete structure of
data.

In a previous example we described the field ZIPCode as a metadata object in an address book database..
This meta object represents a single distinct bit of metadata information. We alluded to its parent table,
StreetAddress. These meta objects, and others that would describe the other tables and columns within the
database, would all combine to form a physical metadata model for whichever enterprise information
system hosts all the objects.

You can have physical models within your collection of metadata models. These model physical data
storage locations. You can also have virtual models, which model the business view of the data. Each
contains one type of metadata or another. For more information about difference between physical and
virtual metadata, see “Physical and Virtual Metadata.”

NOTE: For more information about using models as you model your metadata, see “Modeling Your
Metadata.”

BUSINESS AND TECHNICAL METADATA

Metadata can include different types of information about a piece of data.

* Technical metadata describes the information required to access the data, such as where the
data resides or the structure of the data in its native environment.

* Business metadata details other information about the data, such as keywords related to the
meta object or notes about the meta object.

Note that the terms “technical” and “business” metadata refer to the content of the metadata, namely what
type of information is contained in the metadata. Don’t confuse these with the terms “physical” and “virtual”

metadata that indicate what the metadata represents. For more information, see “Physical and Virtual
Metadata.”

6 MetaBase Modeler User’s Guide, Release 4.2 SP2

Modeling User-Defined Functions
Business and Technical Metadata

Technical metadata represents information that describes how to access the data in its original native data
storage. Technical metadata includes things such as datatype, the name of the data in the enterprise
information system, and other information that describes the way the native enterprise information system
identifies the meta object.

Using our example of an address book database, the following represent the technical metadata we know
about the ZIP code column:

* Named ZIPCode.

* Nine characters long.

* Astring.

* Located in the StreetAddress table.
* Uses SQL Query Language

These bits of information describe the data and information required to access and process the data in the
enterprise information system.

Business metadata represents additional information about a piece of data, not necessarily related to its
physical storage in the enterprise information system or data access requirements. Business metadata can
represent descriptions, business rules, and other additional information about a piece of data.

Continuing with our example of the ZIP Code column in the address book database, the following
represents business metadata we may know about the ZIP code:

* The first five characters represent the five ZIP code numbers, the final four represent the ZIP
Plus Four digits if available, or 0000 if not.

* The application used to populate this field in the database strictly enforces the integrity of the
data format.

Although the first might seem technical, it does not directly relate to the physical storage of the data. It
represents a business rule applied to the contents of the column, not the contents themselves.

The second, of course, represents some business information about the way the column was populated.
This information, although useful to associate with our definition of the column, does not reflect the
physical storage of the data.

matrix’

What is Metadata?
Physical and Virtual Metadata

PHYSICAL AND VIRTUAL METADATA

In addition to the distinction between business and technical metadata, you should know the difference
between physical metadata and virtual metadata. Physical and virtual metadata refer to what the metadata
represents, not its content.

Physical metadata directly represents metadata for an enterprise information system and captures exactly
where and how the data is maintained. Physical metadata sounds similar to technical metadata, but physical
metadata can contain bozh technical and business metadata. When you model physical metadata, you are
modeling the data that your enterprise information systems contain. For more information, see “Modeling
Your Enterprise Information Systems.”

Virtual metadata, on the other hand, can create one or more tailored views that transform the physical
metadata into the terminology and domain of different applications. Virtual metadata, too, can contain both
technical and business metadata. When you model virtual metadata, you’re modeling the data as your
applications (and your enterprise) ultimately use it. For more information, see “Modeling Your Enterprise
Data Needs.”

The term enterprise information system (EIS) represents a physical source of data that your enterprise uses
in its business activity. Your enterprise probably derives information from numerous sources, including
Relational database management systems (RDBMS), streaming Internet data feeds, text files, legacy systems,
and others.

When you model the physical metadata within your enterprise information systems, you capture some
detailed information, including:

* Identification of datatypes
* Storage formats
* Constraints

* Source-specific locations and names

The physical metadata captures this detailed technical metadata to provide a map of the data, the location of
the data, and how you access it.

This collection of physical metadata comprises a direct mapping of the information sources within your
enterprise. If you use the MetaMatrix Server for information integration, this technical metadata plays an
integral part in query resolution.

For example, our ZIPCode column and its parent table StreetAddress map directly to fields within our
hypothetical address book database.

8 MetaBase Modeler User’s Guide, Release 4.2 SP2

Modeling User-Defined Functions
Physical and Virtual Metadata

To extend our example, we might have a second source of information, a comma-separated text file
provided by a marketing research vendor. This text file can supply additional demographic information
based upon address or ZIP code. This text file would represent another EIS, and the meta objects in its
physical model would describe each comma-separated value.

When you create virtual metadata, you are not describing the nature of your physical data storage. Instead,
you describe the way your enterprise uses the information in its day-to-day operations.

Virtual metadata derives its classes and attributes from other metadata. You can derive virtual metadata
from physical metadata that describes the ultimate sources for the metadata or even from other virtual
metadata. However, when you model virtual metadata, you create special “views” on your existing
enterprise information systems that you can tailor to your business use or application expectations. This
virtual metadata offers many benefits:

* You can expose only the information relevant to an application. The application uses this
virtual metadata to resolve its queries to the ultimate physical data storage.

* You can add content to existing applications that require different views of the data by adding
the virtual metadata to the existing virtual metadata that application uses. You save time and
effort since you do not have to create new models nor modify your existing applications.

* Your applications do not need to refer to specific physical enterprise information systems,
offering flexibility and interchangeability. As you change sources for information, you do not
have to change your end applications.

* The virtual metadata models document, in a central place, the various ways your enterprise uses
the information and the different terminology that refers to that information.

Our example enterprise information sources, the address book database, and the vendor-supplied comma-
delimited text file, reside in two different native storage formats and therefore have two physical metadata
models. However, they can represent one business need: a pool of addresses for a mass mailing.

By creating a virtual metadata model, we could accurately show that this single virtual table, the
AddressPool, contains information from the two enterprise information systems. The virtual metadata
model not only shows from where it gets the information, but also the SQL operations it performs to select
its information from its source models.

This virtual metadata can not only reflect and describe how your organization uses that information, but, if
your enterprise uses the MetaMatrix Server, your applications can use the virtual metadata to resolve
queries.

To create this virtual metadata, you create a transformation, a special query that enables you to select
information from the physical (or even other virtual) metadata models. For more information, see

“Modeling Transformations.”

matrix’

What is Metadata?

Modeling Metadata Transformations

MODELING METADATA TRANSFORMATIONS

Metadata Transformations

By modeling virtual metadata, you can illustrate the business view of your enterprise information sources.
Virtual metadata models not only describe that business view, but also illustrate how the meta objects
within the virtual metadata models derive their information from other metadata models.

Let’s return to the example of our address book database and the vendor’s comma-separated list. We want
to generate the virtual metadata model, Address Pool, from these enterprise information systems.

Address Book Vendor Text
Database File

\<l>/

The transformation that joins these metadata models to create the virtual Address Pool metadata model
contains a SQL query, called a union, that determines what information to draw from the source metadata
and what to do with it. For more information about the SQL you can include in your transformations, see
“SQL in Transformations.”

The resulting Address Pool contains not only the address information from our Address Book database, but
also that from our vendor-supplied text file.

1 O MetaBase Modeler User’s Guide, Release 4.2 SP2

Modeling User-Defined Functions
Modeling Metadata Transformations

SQL in Transformations

Transformations contain SQL queries that SELECT the appropriate attributes from the information
sources.

For example, from the sources the transformation could select relevant address columns, including first
name, last name, street address, city, state, and ZIP code. Although the metadata models could contain
other columns and tables, such as phone number, fax number, e-mail address, and Web URL, the
transformation acts as a filter and populates the Address Pool metadata model with only the data essential
to building our Address Pool.

You can add other SQL logic to the transformation query to transform the data information. For example,
the address book database uses a nine-character string that represents the ZIP Plus Four. The
transformation could perform any SQL-supported logic upon the ZIPCode column to substring this
information into the format we want for the Address Pool virtual metadata model.

Mapping XML Transformations

When you model virtual metadata, you can create a virtual XML document model. This virtual document
lets you select information from within your other data sources, just like a regular virtual metadata model,
but you can also map the results to tags within an XML document.

Address Book
Database

Vendor Text
File

N

Address Pool

Address XML

In this example, the Address Pool virtual metadata model still selects its information from the Address
Book Database and the Vendor Text File, but it also maps the resulting columns into tags in the Address
XML document.

gigy metamatrix® 11

What is Metadata?

Design-Time and Runtime Metadata

DESIGN-TIME AND RUNTIME METADATA

MetaMatrix software distinguishes between design-time metadata and run-time metadata. This distinction
becomes important if you use both MetaMatrix MetaBase and the MetaMatrix Server. Design-time data is
laden with details and representations that help the user understand and efficiently organize metadata. Much
of that detail is unnecessary to the underlying system that runs the Virtual Database that you will create. Any
information that is not absolutely necessary to running the Virtual Database is stripped out of the run-time
metadata to ensure maximum system performance.

Design-time metadata refers to data within the MetaBase Repository or your local directory that you have
created or have imported. You can model this metadata in the MetaBase Modeler, adding physical and
virtual metadata. If you only use the MetaBase product, you will work exclusively with design-time
metadata.

The MetaBase Modeler handles design-time metadata, but within the MetaBase Repository Manager you
take the preliminary steps to create the runtime metadata. For more information, see “Sharing Models and
Projects in the Team Repository.”

Once you have adequately modeled your enterprise information systems, including the necessary technical
metadata that describes the physical structure of your ElSes, you can use the metadata for data access.

To prepare the metadata for use in the MetaMatrix Server, you take a snapshot of a metadata model for the
MetaMatrix Server to use when resolving queries from your client applications. This run-time metadata

represents a static version of design-time metadata you created or imported. As you create this runtime
metadata, the MetaBase Modeler:

e Derives the runtime metadata from a consistent set of metadata models.

* Creates a subset of design-time metadata, focusing on the technical metadata that describes the
access to underlying enterprise information systems.

* Optimizes runtime metadata for data access performance.

You can continue to work with the design-time metadata, but once you have created a runtime metadata
model, it remains static.

12

MetaBase Modeler User’s Guide, Release 4.2 SP2

Chapter 3:
Metamodels in the MetaBase Modeler

WHAT IS A METAMODEL?

Metamodels define which properties, constructs, and terminology are available to describe information. The
type of information you can capture in a metadata model comes from the metamodel. For example, our
metadata representation of our ZIPCode column has a length associated with it because the metamodel it
uses contains a construct called a column which has a property called length.

The MetaBase Modeler uses metamodels to capture metadata according to the Object Management
Group’s Meta Object Facility standard.

NOTE: For more information about this standard, see the Meta object Facility (MOF) Specification,
Version 1.3, March 2000, available from the Object Management Group. http.//www.omg.org

'This aforementioned standard describes metamodels like this:

I: Package

2m’h

Attribute

Each metadata model created with a metamodel can have the following components, or meta objects,
within it:

* Package, which can contain one or more instances of a class or package.
* Class, which can contain one or more attributes and keys.

* Attribute, one or more of which belong to an instance of the class.

* Key, one or more of which belong to an instance of the class.

* Associations, which can exist between classes.

13

http://www.omg.org/

Metamodels in the MetaBase Modeler
Metamodels in the MetaBase Modeler

Payroll Player ID

Position

The MetaMatrix MetaBase Modeler supports several different metamodels that adhere to this standard. For
more information, see “Metamodels in the MetaBase Modeler.”

Throughout this document, you’ll find the terms package, class, and attribute refer to the different meta
objects allowed in a metamodel.

METAMODELS IN THE METABASE MODELER

In earlier releases, the MetaBase Modeler supported only one metamodel, the Data Access metamodel. This
metamodel provided a single terminology to refer to the meta objects and the categories, groups, and
elements that comprised your metadata model.

However, the MetaBase Modeler now supports different metamodels. These metamodels reflect the way
your different enterprise information systems organize the information within and the different terminology
associated with each.

For example, you can select the Relational metamodel when modeling or importing metadata from a
Relational database management system, but this changes the nomenclature available on the menus and
displays to reflect that specific metamodel’s constructs and terminology.

METAMODEL EXTENSIBILITY

The MetaMatrix MetaBase Modeler provides a great deal of extensibility in data modeling because the
MetaBase Modeler recognizes more than one metamodel. Therefore, you can more accurately maintain the
names and domain structure of your enterprise information systems (ElSes) by modeling them in the
terminology native to that type of enterprise information system. You can even create new metamodels that
uniquely capture metadata to describe practically any enterprise information system.

The metamodels in the MetaMatrix MetaBase Modeler are data-driven. This means all rules inherent in the
metamodel that the MetaBase Modeler enforces regarding the packages, classes, and attributes are not hard-
coded in the MetaBase Modeler. All properties available for the packages, classes, and attributes come from
the metamodel as well.

Future versions of the MetaMatrix MetaBase Modeler will include other metamodels, and because of this
extensibility, you can create models using the new metamodels and seamlessly integrate them, including
virtual metadata created through transformations, with your existing models.

14

MetaBase Modeler User’s Guide, Release 4.2 SP2

Modeling User-Defined Functions
Available Metamodel Types

AVAILABLE METAMODEL TYPES

The MetaMatrix MetaBase Modeler Release 4.2 currently supports the following metamodels:

* Relational, which contains packages, classes, and attributes commonly used by Relational
databases. For more information, see “The Relational Metamodel.”

* Data Access, which contains package, class, and attribute terminology used by the MetaMatrix
Server in 1.x releases to resolve queries. For more information, see “The Data Access
Metamodel.”

* XML Documents, used to capture the structure of a virtual document.

* Relational, used to capture the structure (system catalog) of relational sources.

* Relationship, a secondary metamodel that provides generalized relationships between any
model objects and provides a mechanism to constrain which model objects can participate in

the relationships of the corresponding type.

* People, a secondary metamodel that provides a simple model of people, typically used in
conjunction with generalized relationships.

* UML2, provides the subset of UML 2.0 defining static and structural modeling capabilities.

* Transformation, used to capture the structure and detailed information about a
transformation from one or more source classifiers.

* Diagram, a secondary metamodel used to capture the information about a diagram.
* History, a secondary metamodel used to represent the history of an item in the repository.

* Dependency, a secondary metamodel used to capture and represent the dependencies a model
has on other models.

* Core, a secondary metamodel core set of metamodel constructs, including those used to
annotate model objects with a description.

* Model Extension, 2 metamodel that defines extensions to other metamodels.
* Model Compare, a metamodel used to represent and persist model comparisons.
* JDBC, used to represent JDBC driver libraries and JDBC sources.

* Function, used to capture the user-defined functions that are available to the MetaMatrix
Server. Note that the category property is a required property in this metamodel.

* VDB, used in the manifest model of a virtual database file to capture the models that make up
the virtual database and other information about the information contained within the virtual

database file.

* DQP, used in the configuration model for an embedded DQP component.

matrix’ 135

Metamodels in the MetaBase Modeler
Available Metamodel Types

* Web Services, a model builder for generating a Web Services model from a Web Services
Definition (WSDL) file.

Not every possible setting for every possible metamodel is covered in this manual. Some of the different
metamodel terms include:

Metamodel Package Class Attribute
Data Access Category Group Element
Relational Schema, Catalog Table, View Column, Key
Simple Datatypes Domain Atomic Simple Type Facet

List Simple Type

Union Simple Type
XML Document Document Element, Attribute None
Web Services Interface Operation Input, Output

In other MetaMatrix documentation, this distinction does not exist; once you create a virtual database
(VDB) for use with the MetaMatrix Server, the VDB uses the Data Access metamodel. Therefore, other
documentation uses the Category/Group/Element type terminology to refer to the Package, Class, and
Attribute.

These metamodels are based upon the Object Management Group’s Meta Object Facility (MOF) and
Common Warchouse Metamodel (CWM) standards.

The Relational Metamodel

The Relational metamodel describes metadata (and so the native data storage) in terms associated with
Relational database management systems (RDBMS). The Relational metamodel reflects the following
organization of information:

Catalog

Schema

Relationship

Column

As such, this metamodel names the Packages, Classes, and Attributes as follows:

Package Class Attribute
Schema, Catalog Table, View, Result Set, Stored Procedure Column, Key

16

MetaBase Modeler User’s Guide, Release 4.2 SP2

Modeling User-Defined Functions
Available Metamodel Types

The Data Access Metamodel

The Data Access metamodel describes metadata (and the native data storage) in terminology used by the
MetaMatrix Server in 1.x releases. The Data Access metamodel reflects the following organization of

information:
—-
| Category
—

Element

sk

As such, this metamodel names the Packages, Classes, and Attributes as follows:

Package Class Attribute
Category Group Element

The XML Metamodels

The metamodels for XML Schema, and XML Documents reflect the structure, including tags and
attributes, within XML files.

Child
[V

R

Attribute Data

The XML Schema metamodel enables you to model the constraints within an XML Schema; the XML
Document metamodel enables you to describe the contents of an actual XML instance document.

gigy metamatrix® 17

Metamodels in the MetaBase Modeler
Available Metamodel Types

When you begin to model your enterprise information systems, one of the first decisions you must make is
which metamodel you should use to represent your physical or virtual metadata. You should base this
decision by determining the constructs and the terminology you want in your metadata model.

The Relational metamodel contains terms and constructs specific to Relational databases. The constructs,
which not only include the name of the packages, classes, and attributes but how they relate to one another,
reflect those common to Relational databases. In general, you want to create a physical metadata model of a
Relational database using the Relational metamodel. The Relational metamodel also contains constructs that
others do not, such as stored procedures and result sets.

The Data Access metamodel contains more generic constructs and terms by design. You can apply the
constructs within it not only to Relational databases, but other types of enterprise information systems.
Therefore you can use the Data Access metamodel to model any sort of physical enterprise information
system.

The XML metamodel let you create models that describe the XML documents your organization uses to
exchange information.

When creating virtual metadata models, you can choose a metamodel that suits your purpose for modeling
the virtual metadata.

If you want to use constructs and terminology that emphasizes the relational nature of your data, such as
information from Relational databases, you can use the Relational metamodel.

However, if you want to emphasize the abstraction, which is especially useful in more abstract virtual
models that relate to actual physical data storage only through several transformations, you might choose
the Data Access metamodel.

1 8 MetaBase Modeler User’s Guide, Release 4.2 SP2

Chapter 4:
Getting Started with the MetaBase
Modeler

WHAT IS THE METABASE MODELER?

The MetaBase Modeler is an interface that enables you to capture, model, and maintain metadata for your
organization’s disparate enterprise information systems (EISes) and business views of those systems. You
can model the form and structure of each EIS and logically name and organize the data independently of
the physical data store. You can also import metadata from a variety of formats, including directly from
some databases. Once you have created the metadata you need, you can store it as a metadata model, a set
of related metadata sharing a common metamodel.

You can model this metadata to organize how your enterprise’s information systems relate to one another.
You can also create diagrams that illustrate the business rules your organization uses with the information
within the enterprise information sources. MetaBase Modeler offers display and print capability for
diagrams.

As you create models to represent the enterprise information systems youtr organization uses, you can use
the MetaBase Modeler’s MetaBase Repository Manager to store your models and enable other members of

your organization to review or modify them.

Once you have organized your metadata into models, your organization, if you use the MetaMatrix Server,
can then use those metadata models to perform queries using the data sources you have modeled.

The primary functions of the MetaBase Modeler include:

* Creating and editing metadata models. You can do this locally, without connecting to the
MetaBase Server. For more information, see “Using the MetaBase Modeler Workspace.”

* Sharing and storing metadata models. You connect to a MetaBase Server to store and version
models in the MetaBase Repository. For more information, see “Sharing Models and Projects
in the Team Repository.”

* You can also use the MetaBase Modeler to define runtime metadata that the MetaMatrix Server
uses to resolve queries. Every time a model is checked into the Team Share Repository, it is
automatically added to the Design Time Catalog (DTC). The DTC can be searched using any
standard reporting tool. For more information, see “Sharing Models and Projects in the Team
Share Repository.”

19

Getting Started with the MetaBase Modeler
Using the MetaBase Modeler Workspace

USING THE METABASE MODELER WORKSPACE

As you create your metadata models and populate those models with meta objects, diagrams, and
transformations, you save your progress in your local directory. The MetaBase Modeler stores models using
the Object Management Group (OMG) XML Metadata Interchange (XMI) standard.

The MetaBase Modeler handles this, the first of its primary functions, in the MetaBase Modeler window
(also called the workspace). For more information about the MetaBase Modeler window, including its panel
layout, see “Viewing the MetaBase Modeler Workspace Window.”

Within this window, you can:
* Create metadata models and meta objects
* Import metadata from external soutces, such as JDBC-compliant databases or XMI files
* Edit or view meta objects or diagrams
* Create transformations for virtual metadata
Note that you do not need a user name and password for the MetaMatrix System to model metadata within

the MetaBase Modeler. You will, however, require a user name and password to connect to a MetaBase
Server and its MetaBase Repository.

You can access the MetaBase Modeler Workspace in two ways.

If you’re running the application, you can use the command line or Windows Start menu.

Running the Application

You can run the MetaBase Modeler by executing the script or batch file that runs the MetaBase Modeler.
The name of this file depends upon the operating system of the workstation upon which you run the
MetaBase Modeler.

In the Windows operating system, you select Programs > MetaMatrix Modeler 4.2 > Modeler.

20 MetaBase Modeler User’s Guide, Release 4.2 SP2

Modeling User-Defined Functions
Using the MetaBase Modeler Workspace

Viewing the MetaBase Modeler Workspace Window

The MetaBase Modeler Workspace window looks like this the first time you open it:

File Edit Mavigate Search Project

Metadata Run

2 MetaBase Modeler - Welcome - MetaMatrix MetaBase Modeler

Window Help

B-BR@E 5] %-[|v]e-ce-o-
ﬁ 1= Model Explarer S oA | o .=§=' - % X
@ MetaMatrix MetaBase Modeler
~
Welcame! This page is your introduction ko the MetaMatrix MetaBase Modeler, —
To get started, read the sections below and click on the related links,
If vou close this page, vou can open it again by selecting Help = \Welcome. .. = MetaMatrix MetaBase Modeler,
(3 Create a Model Project
First vou will need ko create a new Model Praject.
Select File = MNew = Model Project to create a project and link it to wour File system,
(3 Create a Metadata Model
‘ou can create metadata model files within your new modeling project.
Select File = New > Metadata Model to create a metadata model. o |
% Import Metadata from JDBC
5 If vou have a JDEC-compatible data source, you can use the JDBC Metadata Import Wizard to connect to the data source
Modez| Explorer | Outline and create a model file,
= Seleck Metadata = Import Metadata ko run the wizard,
=] Properties B2 E v x
Property] Value () Create a ¥irtual Database Definition
Load your models into a Yirtual Database Definition so they can be deploved to 2 MetaMatrix Server,
Seleck Fle = New = Virtual Database Definition ko run the wizard,
e
% Prablems (0 items) 9 0 }:p - X
| L | ! | Description i Resource In Faolder Location
Properties |Description Problems | Message Log

The window contains the following parts:

* The Menu bar, which contains a set of commonly used commands.

Fil= Edit

Mavigate Search Projeck

Metadata Fun Window Help

* The Main Toolbar, which provides one-click access to many common commands.

= - E

S B || - || F| R -G

gigy metamatrix®

21

Getting Started with the MetaBase Modeler
Using the MetaBase Modeler Workspace

* The Model Explorer and Outline views, located in the upper left, provide a hierarchical view
of your metadata. The Model Explorer view shows the contents of the entire project. Clicking

the Outline tab toggles to show only the hierarchy of contents in the current Editor Panel
view at any given time.

BE Model Explorer v X

EET]::roi=Tutorial
.project
+--f@ PartsOracle, xmi
+-f@ PartsaL, xmi
+- ¢ Partsvirtual,xmi

Model Explorer | Outline

The Model Explorer view has some useful buttons to help you manage the contents of
the view.

o The Collapse All button closes all open nodes and reduces the view to its most basic
profile.

= | The Synchronize With Editor button automatically changes the selection in Model
Explorer view whenever an object is selected in the Editor Panel.

* The Properties and Description views offers detail about the meta object you have selected.

&= Properties =] :’-'::b -

Properky | Yalue |
iCardinality Ly 227 i
Loqical Relationships
Mame '= SUPPLIER_PARTS
Mame In Source F= SUPPLIER_PARTS
Supports Update vk true
Systerm % False

Properties | Description

The Properties view has a useful button to help you manage the contents of the view.

E | The Show Categories button, when toggled on, groups properties into categories.

2 2 MetaBase Modeler User’s Guide, Release 4.2 SP2

Modeling User-Defined Functions
Using the MetaBase Modeler Workspace

The Problems and Message Log views, located at the bottom right of the Metamodel
window, displays errors, warnings, and informational messages about your models. The
Problems view is updated each time your model projects are built, and contains any violations
of metamodel constraints (such as a Relational Table that contains no columns). The Message
Log contains errors that occur while running the models. Occasionally an error may occur,
such as attempting to paste model objects into an illegal container. These errors may result in
messages logged to the Message Log view. You can examine the messages for more detailed
information.

ﬁ WA
| | Message Plug-in |Date ~

@ Error while Adding 'fPartsSupplier/Oracle_Thin_Driver.xmi' File res,.. com.metamatriz.modeler be.,. Feb 21, 2004 17:53:52
@ Error while Adding 'fPartsSupplier) TextbookSuppliers.xmi'; File reso,., com.metamatriz.modeler te.., Feb 21, 2004 17:58:52
@ The Show History doesnt support operating upon {1} resources com.metamatriz. modeler.be... Feb 21, 2004 17:41:42
@ Error while Adding 'fPartsSupplier).project’; File resource at the giv... com.metamatriz.modeler.te... Feb 21, 2004 16;15:08
@ Error while Adding 'iPartsSupolier iBookDatatbvoes, xsd'; File resourc,.. com.metamatriz.modeler be.., Feb 21, 2004 16:15:08
i
£ | 1]] ¥
Problems IMessage Log IMetaBase Console |MetaBase Status

The Editor Panel view, located on the right, contains a tab at the top for every model file that
is open to be viewed or edited.

_] Welcame | 1 ParksOracle, <mi | 71 ParksSOL. xmi
=
l% B SUFFLIER_ID: string
T B SUFFLIER_MARME: string
O B SUFPFLIER_STATUS: shart suid
O B SUFFLIER_CITY: string
B SUFFLIER_STATE: string
abc B SUFFLIER_ID_1: string
B FART_ID: string
S B QUANTITY: shart
% B SHIFPER_ID: short

88 Transformation Diagram ‘ [Table Editor

gigy metamatrix®

23

Getting Started with the MetaBase Modeler
Using the MetaBase Modeler Workspace

* The Transformation Editor panel appears after double-clicking on the Transformation icon.
It defines the structure of the target of your transformation.

Transformation Editor % E

SELECT PartsSOL Parts Supplier.dbo. SUPPLIER.SUPPLER_ID,

FansS0L PansSupplier.dbo SUPPLIER. SUPPLIER_MNAME.

Farts30L FartsSupplier.dbo SURFLIER. SUFFLIER_STATUS,

FartsS0L ParsSupplier.dbo SUPFLIER.SUPPLIER_CITY,

FartsS0L ParsSupplier.dbo. SUPFLIER.SUFFLER_STATE,

FartsOracle PARTSSUPPLIER.SUPPLER_FARTS SUPFLIER_ID AS SUPPLIER_ID_1,
FansOracle PARTSSUPPLIER.SUPPLER_FARTS PART_ID,

FartsOracle PARTSSUFRFLIER. SUFFLER_FARTS QUANTITY.

FartsOracle. PARTSSUPPLIER.SUPPUER_FARTS SHIFPER_ID FROM

FartsS0L FansSupplier.dbo SUPFLIER, PartsOracle PARTSSUPFLIER.SUPFLIER_FARTS
WHERE Farts50L.FartsSupplier.dbo. SUPPLIER.SUPPLIER_ID =

FartsOracle PARTSSUPPLIER.SUPPLUER_FARTS SUPFLIER_ID

SELECT |UPDATE | INSERT |DELETE

The various view panels do not represent different data. They represent the same metamodel in different
ways. You can customize the size of the panels within the MetaBase Modeler to reflect your particular work
habits and preferences.

As you model metadata within the MetaBase Modeler, you work in the MetaBase Modeler window. The
window represents a workspace, a distinct environment in which you can open, create, and modify
individual models. The Model Exploter/Outline panel expands to show the contents of your workspace
at any given time.

Before you can populate and manipulate the metadata in a workspace you must create a project. A project
represents a named workspace you can open at a later time or add to the MetaBase Repository.

The MetaBase Modeler lets you open more than one workspace (or project) at a time. Each workspace or
project displays in a separate MetaBase Modeler window. Note that although you can open multiple
workspaces, you can only open one MetaBase Repository Manager window.

24

MetaBase Modeler User’s Guide, Release 4.2 SP2

Modeling User-Defined Functions
Modeling Your Metadata

MODELING YOUR METADATA

The MetaBase Modeler offers flexibility in modeling your enterprise’s information. However, when you first
sit down to model metadata, we suggest that you follow these basic steps:

1.

Create a project. Start by creating a project to encompass all of the metamodels that you will
import or create.

Connect your existing EIS systems to the MetaMatrix Modeler. Create a physical
metadata model to describe the information stored in your native enterprise information
system (EIS). The physical metadata model contains technical metadata that describes the
ultimate sources for any virtual metadata you model. For more information, see “Creating a
New Physical Model.”

If your MetaBase Modeler includes a plug-in for the EIS, you can import the metadata
information directly from the data source. For more information, see “Importing Metadata.”

Import the information source(s) into the MetaMatrix Modeler. Create virtual metadata
models that describe the way your enterprise ultimately uses the data located in your ElSes. If
your organization uses the MetaMatrix Server for information integration, your applications
can query undetlying data in your ElSes through the virtual metadata; if you’re only using
MetaBase for metadata management, these virtual metadata models provide useful business
metadata representation. For more information, see “Creating a New Virtual Model.”

Create the transformation between your existing information source(s) and the new
information source you are creating. Within the virtual metadata models, you can create
transformations, which demonstrate how you derive the virtual metadata from the information
within your physical EISes. For more information, see “Creating Transformations.”

Map the XML tags, if desired. If you want to describe your information in the terms of an
XML document, based on an XML Schema file, you can create a virtual XML document and
use transformations and mapping links to map information to the XML. For more
information, see “Mapping Other Data Sources to XMIL..”

Validate and test the model. If you’re deploying the metadata model in the MetaMatrix
Server, you should validate it to ensure the model contains all necessary metadata. For more
information, see “Error Analysis and Rebuilding the Project.”

The validity analysis checks to ensure all required meta object properties have values in order
that the model’s transformations ultimately link to physical data sources.

* Optional: Add your new models and projects to the MetaBase Repository. You can
run your virtual database locally from your own PC, or you can share it by adding it to a
MetaBase Repository. The repository provides persistent storage and version control for
your metadata models, which enables other members of your organization to review and

modify them as well. For more information, see “Sharing Models and Projects in the Team
Repository.”

The remainder of this guide describes the modeling processes, within the MetaBase Modeler Workspace
window in greater detail.

matrix’

25

Getting Started with the MetaBase Modeler

Modeling Your Metadata
R —IIIIILILILI——— —— .

26 MetaBase Modeler User’s Guide, Release 4.2 SP2

Chapter 5:
Creating Metadata Models

When you model your enterprise information systems, you need to capture the essence of how the data
resides in your physical data storage. This modeling relies heavily on technical metadata that describes the
structures, including the packages, classes, and attributes each data store contains. To contain this structure,
you create a physical model. For more information, see “Creating a New Physical Model.”

Once you have one or more physical models that describe your underlying data, or even before you have
fully modeled your physical data, you can create virtual models to contain the business view, or application
view, of the data. These virtual models can contain not only the package, class, and attributes, but also
transformations, which determine how your virtual meta objects come from those in a physical model or
another virtual model. To contain these meta objects and their transformations, you create a virtual model.
For more information, see “Creating a New Virtual Model.”

You can also copy an existing model into a new virtual model. For more information, see “Copying an
Existing Model.”

You can also create new physical metadata models by importing information from a variety of physical data
sources. For more information, see the chapter “Importing Metadata.”

CREATE A PROJECT

The first step in creating a metamodel is to open a project folder for the model that you will create.
1. To initialize a project, from the menubar select File >New > Model Project...

2. The New Project dialog box appears.

£ New Project El

Project

Create a new project resaurce, ﬂ

Project name: | CustnmerServiceInquirH

Project contents
v Use default

|

< Back. ‘ Finish | Cancel

3. Enter a project name and click the Finish button.

matrix’ 27

Creating Metadata Models
Creating a New Physical Model

4. 'The project appears in the Model Explorer/Outline view.

FE Mode| Ex

= =1L skomer Service Inguiry

B4 v x

Madel Explarer | Dutline

CREATING A NEw PHYSICAL MODEL

You can create a new physical metadata model to describe the physical structure of your enterprise
information systems. Physical models, by definition, should match exactly the structure of your native data

storage.

The physical metamodel that you create using the Metamatrix Modeler is representative. The MetaMatrix
Console manages the actual physical connections to your enterprise information sources.

To create a new physical model:

1. From the menubar, select File > New > Metadata Model....

dialog box displays.

= Mew Model Wizard

Mew Model Wizard

Specify file name and location, kype of model, then create model File,

Location: |Custnmer5&wicelnquir},.-'

File Mame: | C5Data.xmi

Metamodel: |Data Arcess ﬂ

Maodel Type: |[@E=RE

Select a model builder (optional):

@‘ Zopy from an existing model of the same metamodel

| | Finish |

The New Model Wizard

%]

Browse, ..

Cancel

Input or browse to the location of the data source, and select the file name.

28

MetaBase Modeler User’s Guide, Release 4.2 SP2

Modeling User-Defined Functions
Creating a New Physical Model

2. From the Metamodel drop-down list, select the metamodel that reflects this enterprise
information system.

3. Select Physical Model from the Model Type dropdown. Click Finish.

4. 'The new model displays on your Model Exploter/Outline view bearing a placeholder name
such as newhbdel 1 or CSdat a. xmi . The file also opens in the Editor Panel.

1= Model Explorer w4 v x

—|- e CustomerServiceInguiry
¥ & CSdata.xmi

Madel Explarer | Dutline

NOTE: You can only save your models to your local directory.

The MetaBase Modeler creates and saves your new model in the local directory. You can begin modeling in
it by creating meta objects. For more information, see the chapter “Creating and HEditing Meta Objects.”

By creating this model as a physical model, you designate this model as reflecting the physical metadata of
your enterprise information system. The contents of the model describe the contents of your enterprise
information system.

To create your organization’s business rules and application view of this enterprise information system, you
need to create one or more virtual models that take the information from your physical group and
transform it to reflect the business rules your organization applies to its information. For more information
about creating these virtual metadata models, see “Creating a New Virtual Model.”

29

Creating Metadata Models

Creating a New Virtual Model

CREATING A NEwW VIRTUAL MODEL

You can create a new virtual model to describe the business rules and application view of your data. The

contents of this model result from transformations that you perform on your physical metadata models or
other virtual metadata models.

To create a new virtual model:

1. From the menubat, select File > New > Metadata Models.

2. The New Model Wizard dialog box displays.

2 New Model Wizard %]

Mew Model Wizard

Specify file name and location, kype of model, then create model file,

Location; | MorthAtlanticSalesStratbegy: Browse. ..

File Mame; | CuskormerInguiry

Metamodel: |Relatiu:unal j

Model Type: |RIEERGEEE

Select a model builder {optional):

@* Generake From existing ML Models

@* Copy from an existing model of the same metamodel
Eﬁ* Transfarm from an existing model

| Finish | Cancel

Input or browse to the Location of the data source, and select the File Name.

30

MetaBase Modeler User’s Guide, Release 4.2 SP2

Modeling User-Defined Functions
Creating a New Virtual Model

From the Metamodel drop-down list, select the metamodel that reflects this enterprise
information system. For a complete list of available metamodels, see Available Metamodel
Tvpes.

Metamaodel: |Chu:u:use a Metamaodel j

Choose a Metamode|

Data Access

Model Extension

People

Relational

Relationship

ML 2.0

WiehService

#ML Docurment

#ML Schema (£50) i

3. Select the Model Type drop down for Virtual Model.
4. Click Finish.

5. The new model displays on your Model Explorer/Ouline view bearing a placecholder name
such as newMbdel 1 or CSdat a. The file also opens in the Editor Panel view.

=8 Model Explorer oA v x

=1z CustomerServiceInguiry
¥ & CSdata.xmi

Maodel Explorer | Qutline

NOTE: You save your models to your local directory under the project location.

The MetaBase Modeler creates and saves your new virtual metadata model. You can begin modeling in it by
creating packages, classes, and transformations. For more information, see “Creating and Editing Meta
Objects.”

Although the meta objects within the virtual model do not map directly to structures in your enterprise
information sources, you must ultimately connect the meta objects, especially attributes, to physical
attributes through transformations. If you use the MetaMatrix Server to integrate your data sources, you’ll
check the validity of these transformations with the Validity Analysis tool.

tamatrix 31

Creating Metadata Models

Creating a New Virtual Model from an Existing Model

CREATING A NEw VIRTUAL MODEL FROM AN EXISTING

MODEL

You can create a new virtual model by copying an existing model if you have a number of meta objects you
want to recycle into your new virtual model. This copy becomes handy if you want to create a more limited
or transformed application view of an existing virtual or physical model.

To copy an existing model into a new virtual model:

1.

2.

3.

Open the model you want to copy in the workspace.
From the menubat, select File > New > Model...

The New Model Wizard dialog box displays.

= New Model Wizard

Mew Model Wizard

x]

9 File location must be specified,

Location: | Browse, ..

File: Marne: |

Metamodel: |Ch-:u:use a Mekamodel

Ll Lo

Maodel Type: |

Select a model builder {optional):

| | Cancel

Input or browse to the location of the data source.

From the Metamodel drop-down list, select the metamodel that reflects this enterprise
information system.

Click either the Virtual Model or Physical Model from the Model Type drop down.
Select Copy from an existing model of the same metamodel.
The Copy an Existing Model dialog box displays. From your metamodel projects folder (or

by browsing to a different folder) you can select the model that you wish to copy into your
project.

32

MetaBase Modeler User’s Guide, Release 4.2 SP2

Modeling User-Defined Functions
Creating a New Virtual Model from an Existing Model

Select a Model File =3

Select the model file to be copied From.

- l=# Service
fA BooksOracle,xmi

Ik | Cancel

8. The components of the model display. You can select any individual components of the
existing model that you wish to copy into your metamodel.

e

X

Copy an Existing Model

Select an existing madel, then select model features to be copied,

Existing Model: BooksOracle. xmi e

Select Model Features to Copy
+[]8 mi:aa
+-[] B BOOKS
= B BOOK_AUTHORS
[F B 1SN : string{2ss)
[F B aUTHOR_ID : lang
FK_AUTHORS
FK_ISEM
[[PE_BOOK_AUTHORS
+ [] B PUBLISHERS

< Back | Finish | Cancel

The MetaBase Modeler creates and saves your new model in the directory. You can begin modeling in it by

creating packages, classes, and transformations. For more information, see “Creating and Editing Meta
Objects.”

n metamatrix’ 33

Creating Metadata Models
Copying an Existing Workspace Model

COPYING AN EXISTING WORKSPACE MODEL

You can create a copy of an existing model in the workspace through either of two Modeler actions,
Copy/Paste and Save As.

To execute Copy on an existing model in the workspace:
1. Select the model in the explorer tree.

2. Right-click and select Copy.

B Model Explorer

Delete
+ R efactor »

3. Select the modeling project or folder under which the new copy will be located

4. Right-click and select Paste. An exact copy of the selected model will be created in the
workspace. All references and unique identifiers (UUIDs) within the copy will be the identical
to the original.

NOTE: Two models with the same unique identifiers are considered ambiguous by the
Modeler and using them risks breaking external references between model objects.
The copied model should be removed from the workspace or placed within a closed
project as soon as possible.

To execute Save As on an existing model in the workspace:
5. Open the model in an editor.

6. While the editor is active, from the menubar, select File > Save As...

34 MetaBase Modeler User’s Guide, Release 4.2 SP2

Modeling User-Defined Functions
Closing a Project

7. Enter the name of the new model in the Save Model As dialog and hit OK.

8.

i dave Model As E m

Select a destination for the copy

+) 1= Books Project [,\\S

Enter the new model name
| Books_Oracle

@ A resource with this name already exists in the same folder

| ¥ I Cancel |

If the contents of the model being copied are referenced from other models in the workspace,
a Save Model As - Import References dialog will appear. The dialog allows the user to
specify which, if any, of the of these models should have their references reset to the new copy.

= save Model As - Import References @

The following model files use or reference the model to be copied.

Select any that should be madified to use the new copy.

[@ Books Project/BooksXML.xmi

Select Al | Deselect alll

OK | Cancel

Upon completion of the Save As action, a new model will be created in the workspace that is
an exact copy of the model open in the editor. Unlike the Copy action, the model and its
contents will be created with new unique identifiers and immediately useable for subsequent
modeling activities.

CLOSING A PROJECT

Closing a project makes all models and all objects within those models effectively disappear from the
workspace. There is a direct impact on some MetaBase Modeler functionality when closing a project:

Build/Validation is not performed on models in closed projects. When a project is closed, all
validation errors and warnings disappear from the Problems view. Also, metadata and
relationship Search functions will not find objects in closed projects.

The Find Model Object function won’t find objects in closed projects.

Any popup dialog that displays objects, like those in a relationship wizard or the Set Datatype
dialog, will not display any objects in closed projects.

iy metamatrix’

35

Creating Metadata Models

Closing a Project

* Validation on objects in open projects may generate errors if the objects reference other
objects that are in closed projects. Specifically, virtual models in open projects that use
physical models in closed projects will fail.

3 6 MetaBase Modeler User’s Guide, Release 4.2 SP2

Chapter 6:
Importing Metadata

THE METADATA IMPORT WIZARD

The Metadata Import Wizard helps you create a new model in your workspace by importing metadata
information from a physical enterprise information system or other source.

When you import metadata information, the MetaBase Modeler creates a new metadata model for you (in
most cases). Once you have created this metadata model, you can alter it as you would any other; however,
bear in mind that any changes you make to an imported metadata model do not impact the underlying
structure of the enterprise information system the model represents.

You can also use the Metadata Import Wizard, in some cases, to update the information within the models

based on changes to the underlying data source. This capability varies based on the type of data source and
the plug-in that the Metadata Import Wizard uses.

The MetaBase Modeler provides an extensible import wizard framework that allows you to create import
wizards and plug them into the MetaBase Modeler. For more information about creating your own
metadata importers, see the MetaMatrisc MetaBase Plug-in Developer’s Guide.

The MetaBase Modeler comes with several standard plug-ins that you can use to import metadata from
common soutces. These standard plug-ins let you import data from:

* A JDBC-compliant database. For more information, see “Importing from a JDBC Database.”
* The File System loads any file from any location.

* Zip files.

37

amatrix’

Importing Metadata

Importing an XML Schema Document

IMPORTING AN XML SCHEMA DOCUMENT

You can import the contents of an XML schema document file, typically stored within a file bearing the
xsd extension, into a metadata model that describes that file. An XML schema document, commonly
referred to as an XML schema, acts as a blueprint or list of constraints that describe what elements you can
find in an XML instance document that adheres to that XML schema.
You can import more than one XML schema document into your workspace at a time.
To import one or more XML schema document files:

1. Select File > Import. The Import wizard displays.

2. Import source from File System. Click Next.

Select

Irmpart resources from the local file spstem ﬁ

Select an impart sounce:

F2, ERwin @ 3.0 to 3.5.2 Maodels
'Eg! ERwin & 4.0 5P1 to 4.1 Modelz
ﬁ Exizting Project into *Wark space

D‘ b etadata from JOBC Databaze
éﬂ: Metabd atrix 3.7 Models
%‘ Model Project Set

@ Popkin System Architect € 8.8.13 Metadata
Z Zip file

| Mext » | Cancel

38

MetaBase Modeler User’s Guide, Release 4.2 SP2

Modeling User-Defined Functions
Importing an XML Schema Document

Navigate to the folder containing the XML schema document, select the document, and click
Finish. The new metadata model displays on the Model Explorer/Outline view with the
name of the XML schema file.

File system

Import resources from the local file system,

From directary: |C:'|,m0dels'|,examples'|,800ks

[Bocks O E authorskML.pri

D AukthorsktL, xml

B - ;
D BookDatatvpes,xml
D BooksPhysical, xml
|:| BooksSchema,xml
|:| Booksvirtual, xml
O Bl socksimL pri
D Books XML, sl

Filter Tvpes...| Select Al Deselect All |

Browse. .,

Into Folder: | CustomerServiceInguiry

Options:

[Overwrite existing resources without warming

" Create complete Folder struckure

* Create selected folders only

| Firish |

< Back | Cancel |

You can make changes to the XML schema document by double-clicking on the .xsd file in the
Model Explorer view. You can edit the XML schema document in the Editor Panel view.

=-[8] Employees.xsd
2 Employee schema Copyright (c) 20
+-[e] Employee
+-@ | EmployseType
+-[e] simpleEmployees
+-é | simpleEmployesType
#-[e] Name
+-[&] Address
+-[€] Empld : xs:positivelnteger

12 Model Explorer - x | BaoksOracle. xmi CSdata.xmi Custamatinguiry i PartsOracle xmi
e %><F <?xml wversion="1.0" encoding="UTF-8"2> A
3 B BOOKS = <!-— edited with XML Spy v4.4 U (htep://vww.xmlspy.com) by Paul Niccel (MetaMatrix) ——>|
B EOOK_AUTHORS <xs:schema xmlns:xs="htep://www.wd.org/2001/XMLSchema” elementFormDefault="gqualified"” actributeFormbefan
: B PUBLISHERS <¥s:annotation>
+ 4 Books Oracle <xs:documentation xml:lang="en">Employee schewa Copyright (o) 2002, MetalMatrix. All right resers
= @ Csdataxmi Version 1.1 ineludes:
% Parkage Diagram pattern (phone £l
5@ Custoreringuiry.mi annovarion: docurentation and appInfo
% Package Diagram Snumeration
5] Employees.xsd attribute
= EE PartsOracls xmi rECurSlDl’.l of employes a3 a supervisor</xs:documentation:
% Package Diagram </xs:annotation>
B PARTSSUPPLIER <xs:ielement neme="Employee™s
& Patsoracle v <xs:annotation:
<xgtdocumentation xml:lang="en">This schema describes an employee</xs:documentation:>
8 outline mEEE L ox <xg:appinforappContent="Employee"</xs:appinfox

</xsiannotations
«xg:complexTyper
<xgF:sequence maxOccurs="unbounded">
<xs:element name="Ewployee” type="EmployeeType"/>
</ xs:sequences>
</x3:complexType>
<fxsielement:
<xs:complexType name="EmployeeType"s>
<x3:sequence>
<xsielement ref="Hame"/>
<xs:element ref="iddress"/>
<xs:element ref="EmpId"/ >
< >

Source | Semantics | Synkax

39

Importing Metadata

Importing from a MetaMatrix Model File

IMPORTING FROM A METAMATRIX MODEL FILE

If you or someone else has exported a metadata model you can easily import that metadata into your
workspace or current project. You’ll find this useful when you want to import metadata models from other
MetaBase Repositories or from a file sent to you by another party or from MetaMatrix Technical Support.

To import an .xmi model file:
1. Select File > Import. The Import dialog box displays.

2. Import source from File System. Click Next.

Select

Import metadata using JDBC from a database inko a new or h
exisking relational madel,

Select an import source:;

P, ERwin @ 3.0 ko 3.5.2 Models
F2 ERwin @ 4.0 5P1 to 4.1 Models
ﬁ Existing Project inko Waorkspace
3, File svstem

&% I6M Rational Rose @ Model

D Metadata from JDBC Database
éﬂ:MetaMatrix 3.1 Models
%‘Mndel Project Sek

@F‘Dpkin System Architect © 5.5, 13 Metadata
%‘Team Project Set

& 7ip file

| Mext = | Cancel

40 MetaBase Modeler User’s Guide, Release 4.2 SP2

Modeling User-Defined Functions
Importing from a MetaMatrix Model File

3. Navigate to the folder containing the model file, select the file, and click Finish.

& Import b—('

File system
Import resources From the local file system., EI
A
From directory: |C:'|,models'|,examples'l,Books LJ Browse,..
[aoks O B .project 25
a @ BookCatalog. xsd
[[S] BoakDatatypes. xsd
[[S] Bocks. xsd
O @ Bookss.xmi
a @ Employees, xsd
2} rartsbac.xml
v
Filter Types... | Select all Deselect All |
Into folder: | CustomerServiceInguiry Browse...
Options:
I Owerwrite existing resources withaut warning
" Create complete Folder structure
% Create selected Folders anly
< Back | | Finish | Cancel |

4. If you import this model into a different project, you may need to use Rebuild Model
Imports from the Metadata selection of the menu bar.

GEEREEN Fun window Help
Euy Import Metadats

| [, Refresh Maodel From Source

| 2y Expart Metadata

h Show Datatype Hierarchey

Close Model
Rebuild Model Imports

h metamatrix® 41

Importing Metadata

Quick Import and Copy of Existing Metamodels and XML Schema Documents

QuiIcK IMPORT AND CoOPY OF EXISTING METAMODELS
AND XML SCHEMA DOCUMENTS

Copy and Paste Method

You can bypass all of the previous instructions for importing or copying an existing metamodel or XML
schema document using a simple copy and paste procedure to get metamodels into an existing project.
Most metamodels are files that can be moved from one directory structure to another.

NOTE: You cannot cut and paste JDBC databases. JDBC databases require connections, connection
drivers, and passwords.

1. Using Internet Explorer, navigate to the model file that you wish to import or copy.

=)
-

& Secure Databases

File Edit “iew Favorites Tools Help

eBack - _)l Lﬁ ;j Search 0 Folders v

Z:\Databases!\Secure Databases)CustomerData V| GO

[NewCustt xmi
TewCustorE wxmi
JemfrewiCus i
TewCustO , xmi
MonRenewals2006 , <mi

File and Folder Tasks &

mii Rename this file
ﬁ More Ehis File
Copy this File
%] Publish this file to the

2. Select the model to be imported or copied.
3. Press CTRLAC to copy the model.

4. Open the MetaMatrix Modeler. In the Model/Explorer view, right click on the project.

FE Maodel Explarer v X
G m| | H ST

=R = 1 ckomer Servicelnguiry
.project
+- i@ C5data.xmi
+- i@ Customeringuiry . xmi
@ Emplovees.xsd

42 MetaBase Modeler User’s Guide, Release 4.2 SP2

Modeling User-Defined Functions
Quick Import and Copy of Existing Metamodels and XML Schema Documents

10.

5. Select Paste to paste the import or copy into your project. (Paste will be disabled if the
Modeler determines that you already have the specified model in your workspace.)

B model Explorer

Go Inko
Cpen in Mew Window

#® Delete
Move...

Fename

£ Import...

Ly Export...

£§3I Refresh

Close Project

Add JET Mature
Team [
Compare \With r

Restare Fram Local Hiskary, .

Properties

The MetaMatrix Modeler will validate the incoming model and add it to the designated project.

Progress Infarmation
@ Operation in progress. ..

Imvaking Model Yalidator an fiCustomerServiceInguiry,

Cancel

gigy metamatrix® 43

Importing Metadata
Importing from a JDBC Database

IMPORTING FROM A JDBC DATABASE

The MetaBase Modeler comes with a number of plug-ins to import metadata from JDBC-compliant
databases. You can import metadata information, including schema, tables, views, columns, and keys,
directly from these databases. The MetaBase Modeler can read database information and build a metadata
model as large or as small as you want.

The MetaBase Modeler comes with the following standard JDBC plug-ins:
* General Database.
* IBM DB2 Database.
* IBM DB2 Database with Java Transaction API (JTA) supportt.
* Informix Database with Java Transaction API (JTA) support.
* Microsoft SQL Server Database
* Microsoft SQL Server Database with JTA support.
* Oracle Database
* Oracle Database with JTA support.

* Sybase Database with JTA support.
To import metadata from a JDBC database:

1. From the menubar, select File > Import. The Import dialog box displays.

44 MetaBase Modeler User’s Guide, Release 4.2 SP2

Modeling User-Defined Functions
Importing from a JDBC Database

2. Import source from Metadata from JDBC Database. Click Next.

Select
N

Irnport metadata using IDEC From a database m
into & new or exisking relational model,

Select an import source;

P, ERwin @ 3.0 to 3.5.2 Madels
F2 ERwin @ 4.0 5P1 to 4.1 Models
ﬁ Existing Project into Workspace
3, File system

&% IBM Rational Rose @ Model

'. kadata from JDEC Database
i, MetaMatrix 3.1 Models
%‘Mndel Project Set

@F‘Dpkin System Architeck @ 5.5, 13 Metadata
%‘Team Project 3et

& 7ip file

m

| Mext = | | Cancel

3. The Import Database via JDBC dialog box displays. Click the Connections button.

& Import Database via JDBC

Select a connection configuration
Select a connection configuration For the database to be imported into a relational model. i
7 |
Conneckion ﬂ Connections. ..
Ditiver:
LRL:
User Name:
Password: |
< Back | | | Cancel

n metamatrix’ 45

Importing Metadata
Importing from a JDBC Database

4. 'The Connection Configuration dialog box displays.

n JDBC Source Configurations

Update IDBC source configurations

3 A driver class must be specified For: 'Cuskomer ServiceOracle'

Source Configurations

CustomerServiceOracle Add. ..

Remove
SavE..,
Load...

Marme: | CustomerServiceracle

Driver: |{SE|E|:|: Diriver = j Drivers. ..

URL Swnkax: Propetties. ..

LRL: | |

ser Mame: |

| | Cancel

5. Enter a name for the database connection that you are initiating. This will be the default name for

the model you will import. It is recommended that you make this connection name descriptive.
Click the Add... button.

46 MetaBase Modeler User’s Guide, Release 4.2 SP2

Modeling User-Defined Functions
Importing from a JDBC Database

6. You may get a list of available Drivers: in a dropdown list. If you can select the driver you need
from a pre-loaded list, select the driver and skip to Step 13. Steps 7 through 12 explain how to
initiate a driver for the first time.

Driver Configurations

MetaMatriz DEZ

Mekalatriz: Informix

MetaMatrix Oracle Add. .
MetaMatriz SOL Server

MetaMatrix Syvbase

Microsoft Access

QDEC wia D3N

7. 1f you need to initiate a driver from scratch, follow the instructions in steps 7 through 13.
Otherwise skip to step 14. Click the Drivers... button. The JDBC Drivers Configuration dialog
box displays.

& JDBC Driver Configurations

Update IDBC driver configurations

Driver Configurations

add. ..

H

Marme: |

URL Syntax: |

Class Mame: J
| Cancel |

8. Click the Add... button. You can now enter the name of the driver configuration in the Name:
field.

tamatrix 47

Importing Metadata
Importing from a JDBC Database

9. In the URL Syntax: field, enter the syntax format for your database server connection properties.

You will need to load the class path (and related .jar files) for your JDBC drivers. See the
documentation that came with your JDBC for specifics on which files are required.

To load additional plug-ins or files, use the Add..., Add Folder..., Add External..., or Add
External Folder... buttons at the bottom right of the dialog box to browse to the necessary
components specified in the JDBC driver documentation.

n JDBC Driver Configurations @

Update JDBC driver configurations

Press the "OK" button to accept vour changes,

Driver Configurations

MetaMatriz DBZ
etaatrlx Informix add...

=

MetaMatriz SOL Server
R
MetaMatriz Sybase EMOVE

Marne: | Metatatriz Oracle

URL Syntax; | jdbcimme oracle: f <host =1 1521 ; Sid=<sid >

Libraries
platForm: fphugin/com.metamatrix, datadirect/MIbase. jar Add. .. ‘
platForm: fplugin/com. metamatrix. datadirect /MIutl. jar
platForm: fplugingcom. metamatrix, datadirect /MIorade. jar Add Falder... ‘
Add External... ‘
Add External Folder. .. ‘
Class Mame: | com,metamatriz., jdbc.orade, OracleDriver ﬂ Update

Ok | Cancel

10. Click the Update button at the bottom right of the dialog box.
11. Select a class name from the Class Name: dropdown box.

12. Click OK.

48

MetaBase Modeler User’s Guide, Release 4.2 SP2

Modeling User-Defined Functions
Importing from a JDBC Database

13. The Connection Configurations dialog box displays again, this time with most of the critical
tields completed.

n JDBC Source Configurations @

Update JDBC source configurations

Press the "OK" button ko accept your changes.

Source Configurations

CustomerServiceOracle Add...

Remave
SaNE. .
Load. ..

arne: CustomerServiceOracle

Driver: Drivers...

URL Syntax: jdbc:mmeoracle:f <hosts: 1521 ;Sid=<sid Properties. ..

LRL: | jdbec:mnecaracle: /f <host =1 1521 ;Sid=<sid= j

User Mame: |

Test Connection. ..
ok | Cancel

14. The Properties button opens a list of the properties associated with the type of JDBC driver that
you are using.

I JDBC Driver Properties @

Properties supported by the JIDBC driver "MetaMatrix Oracle”
Property | Description
CatalogIncudessynonyms return {procicolumn and Indexinfo For synonyms (slower)
CatalogOptions inkeqger bitmask configuring the DatabaseMetadata catalog resultsets
FetchT3W T Zas Timestamp turn on to Fetch TIMESTARMP WITH TIMEZOMES walues as bimestamps
SID Oracle 510
THSMamesFile Fully qualified path of the file containing THS name information. Typically, this file is named
TH3Serverame The name of the entry within the TMSMamesFile to be used For connection infarmation
alternateServers List of server connection information used o aktempt an alkernate connections,
batchPerformance\orkaround Bakch Performance workaround
codePageOverride Code page override
connectionRetryCount Max number of times to attempt a connection.
connectionfetryDelay Time to delay before retrying connection,
insensitiveResultSetBufferSize Maxiumn memory in KB to use For client-side insensitive scralling,
loadBalancing Specifies whether to perform load balancing.
maxPooled3tatements Maximurm number of PreparedStatement objects to poal,
password Oracle Password
portMumber Database Server Port Mumber
refCursorSupport REFCIURSOR, variables returned as multiple result seks
serverMame Database Server Hosk Mame
serverType Determines whether a connection is established to a dedicated or shared server process
serviceMame Oracle service name
ser Oracle user
< >

49

Importing Metadata
Importing from a JDBC Database

15. In the URL: field, use the prefilled syntax structure to enter the location of the database you are
importing. Replace any generic fields with specific server locations, port numbers, or system
identifiers.

URL Swntax: jdbcimmioracle:ff<host 11521 ;5id=<sid =
JRL: | jdbc:mmz::oracle: ffoustdbl 4 Begd; Sid=chicnk 1 ﬂ

16. In the User Name: field, input the name of the database connection to be used to import the
database.

User Mame: | CustomerInguiryDE14

17. Click Test Connection. You may be prompted for a password.

18. Once again, you are returned to the Import Database via JDBC dialog box, now with some fields
prefilled.

= Import Database via JOBC

Select a JDBC source configuration
3 Press the "Connect to Database” butbon ko connect to the database. i
v |
Source |MetaMatrix Oracle | sources...
Driver: fMetaMatrix Oracle
IJRL: jabcsmmeoracle: ficustdbl4: 277 2; Sid=chicnt0l

User Mame: CustomerInguiryDBE14

paSSWDrd' | seokekekobobobabokobobobok bbbk

Connect bo Database
< Back, ‘ | | Cancel

Enter the database connection Password and click Connect to Database.

19. Once the connection is established, click Next.

50 MetaBase Modeler User’s Guide, Release 4.2 SP2

20. For an Oracle database, this screen might look like this:

£ Import Database via JDBC

Select Database Metadata

Press the "Mext =" button to continue or the "Finish" button ta finish,

v Foreign Keys

Table Types
v Indexes f[+

™ Unique only

v Approximations Allowed

[Procedures

< Back | ek = | Finish |

Modeling User-Defined Functions
Importing from a JDBC Database

X

3

Deselect Al

Cancel |

You can choose the meta objects you want to import. From

the Tables Types list box, select the

types of features in the database you want to import. The types of tables available differ depending

upon the type of database.
21. You can click the following checkboxes:
* Foreign Keys to import foreign keys.

Indexes to import indexes.

Unique Only to import only unique indexes.

rows, when importing indexes.

Procedures to import stored procedures.

Approximations Allowed to allow approximations of index information, such as number of

amatrix

51

Importing Metadata
Importing from a JDBC Database

22. Click Next. The following dialog box appears.

£ Import Database via JOBC

Select Database Objects

Select the objects to import from database “CustServiceracle”,

[} CustServiceOracle

+-[[] ORADESIGHER
+-[] ORDERS
+- [oUTLN

SYMONYM
+-[#] TAELE
WIE W

+-Jrc

+-[] PMEFCORT
+-[] PMEPCRT1
+-[] PMEPCRTZ

+-[] PMEPCRT_READ

+-[J PRODUCTS
+. F1rlRs
<

+-[] PMEPCRTZ _USER.

+-[] MWeE_EMULATION

= CUSTINGUIRYDEIN

+-[] PARTSSUPPLIER_CHILDREM
+-[] PARTSSUPPLIER_CRUD
+-[] PARTSSUPPLIER_TEST

+-[] PRIVSYMPARTSSUPPLIER

%
£

Mo details available>

5 table ohject{s) selected to impart.

< Back

Mext = | Einish | Cancel

This screen shows metadata in the context of your connection and previous selections. You
can see metadata for other connection accounts, but no data.

23. To see additional metadata for the connection that you ate establishing, click on the checked
description in directory tree. You can see additional details such as column headings, indexes,
keys, and descriptions.

& Import Database via JDOBC

Select Database Objects

Press the "Next =" button to continue or the "Finish" button to finish,

3

)

[Partsoracle @b Indexes 'Primary Key ' Imported Foreign Keys Exported Foreign Keys 'Description
=[] PARTSSUFPLIER ~ ||| TABLE_SCHEM | TABLE_pAME | COLUMM_MAME | DATA_TYPE | TYPE_MAME | COLUMN_SIZE | BUFFER _LEMSGTH
[Smcne 1 PARTSSUPPLIER. SUPPLIER SUPPLIER_ID 12 WARCHARZ 10 o
=[] TABLE PARTSSUPPLIER. SUPPLIER SUPPLIER._MAME 12 YARCHARZ 30 o
[PaRTS PARTSSUPPLIER, SUPPLIER SUPPLIER_STATUS 3 NUMBER 2 o
SHIP_VIA PARTSSUPPLIER. SUPPLIER SUPPLIER_CITY 12 MARCHARZ 30 i)
O = T PARTSSUPPLIER. SUPPLIER SUPPLIER_STATE 12 WARCHARZ 2 o
Ostams
SUPPLIER.
[SUPPLIER_PARTS
WIEW
b
< I | . >
5 table objectis) selected ta import,
< Back, Mext = | Finish | Cancel

52

MetaBase Modeler User’s Guide, Release 4.2 SP2

Modeling User-Defined Functions
Importing from a JDBC Database

For more information on the significance of data type, type name, and their relationship to
JDBC type in the established JDBC import, see Appendix C, “]DBC Imports and Built-in

Datatypes.”

24. Click Next. The next JDBC Import dialog box displays.

£ Import Database via JDBC

Specify Import Options

Press the "Finish" button ko finish,

Maodel Mame: | CustServiceOracle

I @

Into Folder: | CustomerSeryiceInguiry - Browse. ..
[Update (i existing model selecked)

Include In Model

Select whether the Following types of objects should be included in the model:

v Schema

Maodel Object Names

Seleck the case-conversion that should be performed when assigning source object names ko model abjects:
f* Mone

" Uppercase

" Lowercase

Source Object Names

Select the walue of the "Mame in Source” property For imported model objects:
" Empty

{* |Unqualified Source Mames

™ Fulky-Gualified Source Mames

< Back ‘ Finish | Cancel

Where the previous JDBC import dialog boxes dealt with which metadata will be imported, this
panel specifies bow metadata will be imported. Following is an overview of the options available
through this dialog box.

* Update - Select update if you want this import to update a model that already exists in your
workspace. If you check the Update box, there will be one additional screen before the
importer wizard completes. You will only see this screen if you have previously imported the
same model

[Update {if existing rmodel selected)

amatrix’ 53

Importing Metadata
Importing from a JDBC Database

25.

' Import Database via JDBC Pg|

Review Model Differences
Review the changes that will be applied ko vour model bo bring it up to date with the source metadata. i
Uncheck any changes you do nok wish o apply. Press "Finish” to complete the import. -4

Additions: |0 Changes: |0 Deletions: |0

BOOK_ALUTHORS
PUBLISHERS

Select all | Unselect Al

Selection Details

AUTHORS - this selection is Unchanged

< Back | | Finish | Cancel |

From this screen you can see at-a-glance the differences between the existing version of the
model, and the reimported version. You can deselect any attributes that you do not wish to
importt.

Schema - Keep the original format or nested folders of metadata upon import.
W Schema

Model Object Names — Select any conversion of case-shifting in importing metadata naming
conventions.

Model Obiect Names

¢ MNone

" Uppercase

" Lowercase

Source Object Names — Standardizes non-standardized naming, and reconciles “name”
against “name in source.”
Source Object Names

" Emphy
* |Unqualified Source Names

" Fully-Qualified Source Marnes

Click Finish. The new metadata model displays on the Model Exploret/Outline tab with the
database you imported.

54

MetaBase Modeler User’s Guide, Release 4.2 SP2

Modeling User-Defined Functions
Importer for ERwin 3.5.2 Models

IMPORTER FOR ERWIN 3.5.2 MODELS

MetaMatrix provides an importer for ERwin files (version 3.5.2). The importer will create Relational models
in the MetaMatrix workspace.

Supported structural features of ERwin models will be:

e Schema

* Catalog
e Table
* View

* Column

* Index

* Procedure

* Parameter

* Foreign key

* Primary key

* Unique key

* Logical relationship

Any properties (name-value pairs) of these features that are unique your use of ERwin (or describe physical
database attributes) will be implemented using the Modelet's metadata extension functionality. The Modeler
will allow the display and editing of the imported metadata in UML notation in package diagrams within the
model.

55

Importing Metadata
Importer for ERwin 3.5.2 Models

To import and convert an ERwin model, use the following procedure.

1. From the MetaBase Modeler menubar, select File > Import. The Import selection screen

displays.
Select

b

Import and corveert ERwin € models, m

Select an import source;

't ERwin © Models

ﬁ' Existing Project into Workspace
3, File system

;'EIBM Rational Rose & Model
m,Metadata frarm JDBC Database
t:;j:MetaMatrix 3.1 Models
%Team Project Set

B 7ip il

| Mexk = | Cancel

2. Select ERwin Models as your import source. Click Next. The ERwin Import dialog box

displays.
n ERwin Import [z|
Identify Source ERwin Model{s) \
£ The source model has not been selected, D

Source Model: j Browse...

User Properties and Import Options

Property | Yalue |
Diagrarn Yersion 1D
Encoding Windows
Generate name For associati,.. False
Import UDPs As metadata

Destination Information

Location: | j Browse. ..

Physical Model:

Logical Model:

Relationships Model:

|
|
|
Datatype Model: |

< Back. | | Cancel

5 6 MetaBase Modeler User’s Guide, Release 4.2 SP2

Modeling User-Defined Functions
Importer for ERwin 3.5.2 Models

3. Select an ERwin source model. Use the Browse button to navigate, if necessary.

i Target Location Selection |:|®

Choose a kargek location:

BREY CapitaHoldingsintermational2003

O | Cancel

4. Complete the dialog boxes on the ERwin Import Screen. Any user-defined properties and
values will be at the top of the information listed in the User Properties and Import Options
section. A number of core properties and values will always appear.

= ERwin Impaort ['5_(|

Identify Source ERwin Model{s)

Source Model: | ' ERwinModelsouthamericanRealEstate. erx ﬂ Browse. ..
User Properties and Import Options
Property | Walue
Diagrarm Version ID
Encoding Windows
Generate name f... False
Import UDPs As mekadata

Destination Information

Location: | E: /CapitalHoldingsInternationalz003 j

Pheysical Madel: | SpeculativeProjectionsPhysical xmi

Logical Model: | SpeculativeProjectionsLogical, xmi

Relationships Model; | SpeculativeProjectionsRelationships. xmi

Datatype Model: | SpeculativeProjectionsbatatype, xmi

« Back Cancel

5. Click Finish.

When you import an ERwin model, all entities from the ERwin model that are Logical Only or Logical
and Physical get created in the Logical (UML) model.

Also, all entities from the ERwin model that are Physical Only or Physical and Logical get created in the
Physical model.

metamatrix’ =

Importing Metadata

Importer for Rational Rose Models

All types used are created in a Datatype schema. All relationships between entities (Primary Keys, Foreign

Keys, Associations, etc) are represented in the Relationship model and may also be represented in another
model.

IMPORTER FOR RATIONAL ROSE MODELS

MetaMatrix provides an importer for files exported from Rational Rose versions 2000 and 2001.

The importer creates UML models in the MetaMatrix workspace. Supported structural features of UML will
be defined by the UMLClasses Metamodel Project. The content of the Rose model file that matches these
supported features of the MetaMatrix UML metamodel are imported.

The importer allows subsequent reimportation of the Rose model file. It incorporate changes into the
MetaMatrix UML model. Any properties of the supported UML constructs that are unique to your use of
Rose are implemented using the Modeler's metadata extension functionality.

To import and convert a Rational Rose model, use the following procedure.

1. From the MetaBase Modeler menubar, select File > Import. The Import selection screen

displays.
e Import @
Select

N

Import metadata from a IBM Rational Rose € model inko m
a new or existing UML model,

Select an import source:

B2 ERwin © Models

ﬁ' Existing Project into Workspace
3, File svstem

; *1BM Rational Rose
E-Lr'-“letadata from JDBC Database
éj:MetaMatrix 3.1 Models

%& Team Project Set

£ 7ip file

| Mexk = | Cancel

5 8 MetaBase Modeler User’s Guide, Release 4.2 SP2

http://inside.metamatrix.com/ow.asp?UMLClassesMetamodelProject

Modeling User-Defined Functions
Importer for Rational Rose Models

2. Select an IBM Rational Rose Model as your import source. Click Next. The Rose
Importer dialog box displays.

m Rose Importer @

Select the Rose Model {or Unit) and the Contained Units to Import @
3 Please select a Rose model {or other unit), =

Yo)
Rose Model (Unit): | ﬂ J
Zonkained Rose Units =z

Mame | e | File Path |

Units | Path Map

< Back. | | | Zancel

Using the ellipse button J , navigate to a Rose model unit you wish to import.

Source ModelfUnit Selection

Loak in: |E} waorkspace j IfF =

_2. |50 metadata

L’ @PartsManagementSystem
My Recent =Suppli 2
Documents

71-':

Desktop

&

My Documents

Iy Computer

by Metwark, File hame: |PartsSuppIierLogicaI j Open |
Places
ol j Cancel

@

Files of type:

n metamatrix’ 39

Importing Metadata

Importer for Rational Rose Models

3. After you return to the main Rose Importer dialog, check the appropriate models and/or
model children to import. Click Next.

n Rose Importer E

Select the Rose Model {or Unit) and the Contained Units to Import

kg@

A

Click Mext ko identify UML models and Folders For the 1 selected unit{s)

0

Rose Modsl (Unit): |C:'l,metamatrix'l,modeler41'l,workspace'l,PartsSuppIierLogicaI.mdl

Contained Rose Units

L
o

Tame)
PartsSupplierLogical - metamatriximodeler41iworkspace! PartsSuppl

Check Al
Uncheck Al
Check Children
Uncheck Children

|A
|a

Units | Path Map

< Back | Mext = | | Cancel

4. 'The Create New or Select Existing UML dialog appeats.

u Rose Importer, [g|
Create New or Select Existing UML Models and Folders @j
All target models and folders are walid. %‘{@
— A
Target UML Models and Folders @

Fose Unit “s | Folder LML Model

PartssupplierLogical - PartsiManagements em | ParkssupplierLogical

[Editor (1 unit)
[Folder: [Partsmanagementsiystem =
[~ UML Model: |PartsSuppIierL0gicaI ﬂ

< Back | Mext = | | Cancel |

5. Select the target models and folders.

NOTE: If preserving the file system structure of the source Rose Units being imported is
desired, a similar file system structure must exist in the model target location prior
to starting the wizard.

60 MetaBase Modeler User’s Guide, Release 4.2 SP2

Modeling User-Defined Functions
Importer for Rational Rose Models

This wizard page consists of two distinct areas separated by an adjustable, split-pane dialog
box:

* The selected source Rose Units table
e The editor

The top atea consists of a table identifying the Rose Units being imported.

Raose Uit |) | Folder | LML Model |

Select Al

PattsSupplierLogical artsManagement: PartssupplierLogical

Unselect Al

I

For each Rose Unit a target folder and target model name is shown, as well as, an error or
warning indicator. The initial value of the target folder will be set to the model project or folder
that was selected prior to starting the wizard (or none if there was no previous selection).
Selection buttons to the right of the table aid in selecting table rows. Values in the selected
table rows are changed via the editor.

The bottom area is an editor.

[Editor (1 unit) x
[Folder: |PartsManagementSystem j
[UML Model: |F‘artsSuppIieangicaI ﬂ

The editor allows target folders and model names to be changed. The editor modifies all
selected table rows (the top area) with its information once the Apply button is selected. If
more than one row is selected, the information area shows only the common information.

For example, if two rows are selected that have the same target folder, then that target folder
will show in the editor. However, if two rows are selected with different target folders, the
editor will not show any information for the folder.

When changes are made in the editor, the appropriate checkbox is automatically checked.
Unchecking the checkbox will reset the editor back to the original value.

For both the target folder and target model properties, using their respective browse buttons
can set new values. This allows navigation of the workspace. Selecting a recently used value in
the drop-down dialog can also set new values. The editor can be closed and opened either by
using the editor's toolbar button or the top areas toolbar button.

61

amatrix

Importing Metadata

Importer for Rational Rose Models

6. Click Next. A brief progress information bar appears.
Progress Information
@ Computing the difference bebween null and null

Loading resources ...

Cancel

7. You are presented with a dialog giving you the opportunity to lock elements of the UML

model entity(s).
u Rose Importer @
Select UML Model Entities to Lock to Prevent Importer Changes @]
Y-
o |
Locks
Model Elements
+-[#] "= Model Annatation
Properties
Finish Cancel

8. Click Finish.

6 2 MetaBase Modeler User’s Guide, Release 4.2 SP2

Modeling User-Defined Functions
Importer for Rational Rose Models

Adding Relationships to UML Models

To create a secondary relationship model (working in conjunction with a primary UML model), use the
following procedure.

1. From the MetaBase Modeler menu bar, select File > New > Metadata Model. The New
Model Wizard dialog displays.

B

Mew Model Wizard

I3 File location must be specified,

Location: | Browse, ..

File Marne: |

Metarmodel: |Chu:u:use a Metamodel j
=l

Model Type: | ID05E

Select a model builder {optional):

| | Cancel

2. Browse to the location that the model will be placed, give the file a relevant file name, and
choose Relational from the Metamodel: drop down dialog.

Relational models can be either virtual or physical.

iy metamatrix® 63

Importing Metadata

Importer for Rational Rose Models

3. Highlight Generate from existing UML Models.

4.

5.

New Model Wizard

apecify file name and location, kype of model, then create model file,

Location: | \PartsManagementSysten

Erowse. ..

File Mame: | RelationalFromML

Metamodel: |Re|atinna|

Model Type: |\-'irtua| Model

Select a model builder {optional):

nerate from ing LML Mod
Iﬁ‘_ Copy From an existing model of the sare metamodel

@‘ Transform from an existing model

| Mext = |

[
=

Cancel

Press the "Mext =" button to conkinue,

Select the source UML Model features:

Click Next. The Generate a Model from an Existing UML Model dialog displays.

Generate a Model from an Existing UML Model

- [l FartsManagementSystem
= i@ PartsSupplierLogical. xmi
+-[J]% impartMetadata

+-[# = appliedStereotypes
f'a Profile Application
® Parts

G Status

C Supplier

[¥] ./ Assaciation

" hssociation

+]-[FH-F- [

< Back | Mext = |

Cancel

Select the Source UML entities that will generate the Relational Model.

64

MetaBase Modeler User’s Guide, Release 4.2 SP2

Modeling User-Defined Functions
Importer for Rational Rose Models

6. Select the Relationships model in which all of the generated relationships will be placed.

Generate a Model from an Existing UML Model

Press the "Finish" button ko Finish,

Select Model Generation Options
Relationships] General l Datatypes] Generated Keys

Store Relationships In Model:

Relationships. xmi o

< Back, | Finish | Cancel

7. The General options tab contains more optional parameters for the relationship model.

Generate a Model from an Existing UML Model

Press the "Finish" button bo finish,

Select Model Generation rs
Relationships General | Datatypes | Generated Keys

L]

Package Usage: |Ignore

Default Relational Column Type: B sting ...

Length of Type-Defaulted Columns: | 1 =

Class Stereotypes to Ignore

Add...

H

Class Stereotypes to Set Read Only

add...

JU

Reachability Constraint: |Ign0re Reachable not Selected

< Back | | Finish | Cancel ‘

netamatrix’ 65

Importing Metadata

Importer for Rational Rose Models

8. The Datatypes tab contains more optional parameters for the relationship model.

9. The Generated Keys tab contains more optional parameters for the relationship model.

Generate a Model from an Existing UML Model

Press the “Finish" button ko Finish,

Select Model Generation Options
Relationships] General Datatypes TGenerated Keys]

Select the Datatype sources

O1&F PartsManagementSystem

< Back

Cancel

Generate a Model from an Existing UML Model

Press the "Finish" bukkan ka Finish,

Select Model Generation Options
Relationships] General] Datatypes Generated Keys

X]

| feCalurmn

g long: xsinteqger ...

key Column Base Mame:

Key Column Type:

Mumber of Kew Columns: |1

Primary Key Stereotype names: [Primary Key Stereotypes

Add...

[iesr

|

% Back

Cancel |

66

MetaBase Modeler User’s Guide, Release 4.2 SP2

Modeling User-Defined Functions
Importer for Rational Rose Models

10. The ellipse button J launches a Select Datatype menu.

o Select Datatype [Z|
Select a Datatype:
O chiject ~
O positivelnkeger : xs:nonMegativelnkeger
a OMarme
O short ; xsint
£+ <tring
Q time
O timestamp
O token @ xs:normalizedString
O unsignedByte xsunsignedShart
O unsignedInt : xs;unsignedLong
O unsignedLong : xs:nonklegativelnteger
O unsignedshort ; xs:unsignedInk 3
04 | Cancel

11. The Add Primary Key Stereotypes button launches an entry dialog box for the Key
Stereotype Name.

o Enter Key Stereot... [Z|

Key Stereobype Mame:

|
| Cancel

n metamatrix’ 67

Importing Metadata

Connection Information in Metadata Models

CONNECTION INFORMATION IN METADATA MODELS

The Metadata Import Wizards provided by MetaMatrix store information describing the connection used by
the Metadata Import Wizard. You will find these meta objects in physical model, and they describe the

enterprise information system from which you imported the model. You cannot use this information in
virtual metadata models or transformations based upon the physical metadata model.

You can use this connection information to refresh the contents of certain meta objects and models to
ensure the metadata remains consistent with structure of the data source it describes.

Refreshing differs from importing metadata into an existing model in that refreshing automatically uses the
information in the connection meta objects instead of presenting the Metadata Import Wizard for you to
choose the options again and refreshing only compares the meta objects in your existing model, whereas
updating a model allows you to broaden the scope to include other meta objects.

You can refresh the following:
* Relational models.
e Data access models.

To refresh the model, select the model you want to refresh on the Model Explorer or Outline view and
select Metadata > Refresh Model from Source.

GEEEEES Fun Window Help

£2g Import Metadata

B Refresh Model From So

| &3 Export Metadata

k Showe Datatype Hierarchy

Clase Maodel
“= Rebuild Model Imparts

The MetaBase Modeler will use the connection information in the stored with the model and the Metadata
Import Wizard plug-in named in the Connections meta object to automatically re-import the metadata.

Keep in mind you need the plug-in named in the Connections meta object installed on your workstation to
refresh metadata from the source.

MetaBase Modeler User’s Guide, Release 4.2 SP2

Chapter 7:
Navigating Metadata

NAVIGATING THE MODEL/EXPLORER TREE

The Model Explorer view contains a hierarchical organization of the metadata within the project.

Once you have opened a model, your Model Explorer view looks something like this:

FE Model Explore :D: 4}{% X
—|- 1= CustomerServicelnguiry
.project
BooksOracle, xmi
C5data.xmi
Cuskomeringuiry . xmi
*4 Package Diagram
PartsCracle, xmi
*4 Package Diagram
—|--E3 PARTSSUPPLIER.
74 Package Diagram
+-- B PARTS
- B SHIP_WIA
El sSHIPPER_ID @ short
SHIPPER_MAME : stringf 300
[Fl PK_SHIP_VIA
B sTATUS
B SUPPLIER

|>

1][
dr Epd dy

Model Explorer | Outline

The toolbar at the top of the Model Explorer view offers a set of buttons to help you navigate the project
files.

Buttons in the Model Explorer View

The toolbar at the top of the Model Explorer view offers you a quick way to navigate the models you have
open in your workspace.

Button Function

E' Select the last item you viewed before the current node.
= Select the next item you selected after the current node.
& Select the parent meta object of the currently selected node.
=} Collapse all nodes.
= Link with Editor. When toggled “on” it synchronizes any actions done in the Editor Panel
nd view or Description view with an immediate refresh of the Model Explorer view.
21, Filters. You can specify which kinds of files display or do not display in the Model
i Explorer view.

i#y metamatrix” 69

Navigating Metadata
Navigating the Model/Explorer Tree

The icon beside the node of the tree tells you what sort of meta object the node represents.

Icon Meta Object Examples (if applicable)
] Physical metadata model
] Virtual metadata model
o Package Category (Data Access metamodel)
Schema (Relational metamodel)
Catalog (Relational metamodel)
= Virtual package Any of the above packages in a Virtual metadata model
B Class Group (Data Access metamodel)
Base Table (Relational metamodel)
View (Relational metamodel)
B Class Any of the above classes in a Virtual metadata model
A Attribute Element (Data Access metamodel)
Column (Relational metamodel)
K] Unique Constraint
[F] Primary Key
Foreign Key
@, JDBC Sources
B JDBC Import Settings
[Index
pcd Diagram Package
Custom
L] Transformation Diagram
Mapping Diagram
Document XML Schema (XML Schema metamodel)
XML document (XML Document metamodel)
HE Comment Documentation (XML Schema metamodel)
Comment (XML Document metamodel)
{1} Compositor All Compositor (XML Schema metamodel)
Sequence Compositor (XML Schema metamodel)
s Atomic datatype
- Complex datatype
£ Attribute
{e} Element
{0 Namespace
{i Import Import (XML Schema metamodel)
Include (XML Schema metamodel)
" Pattern, Enumeration
o Connection

Click any node in the Model Explorer/Outline view and the properties will display in the Properties and
Description panel. You can modify many properties in the Description view if you can write to the model in your
local directory (you have not checked it into the MetaBase Repository).

70 MetaBase Modeler User’s Guide, Release 4.2 SP2

Chapter 8:
Creating User-Defined Datatypes

WHAT ARE DATATYPES?

Datatypes represent what sort of information a meta object contains. For example, does it contain:
* A number (an integer)
* A number with a decimal point (a float)
* A yes-or-no value, sometimes called a flag (a Boolean)

The datatype represents the type of variable or parameter used to store that information within the data
source.

When you create derived datatypes in the MetaBase Modeler, you're essentially creating a metadata model
using the special classes and attributes that reflect your new datatypes.

71

Creating User-Defined Datatypes
Built-In Datatypes

BuUILT-IN DATATYPES

The MetaBase Modeler offers a wide variety of common datatypes to accommodate common data source
datatypes. In addition to reusing all of the XML Schema built-in types, MetaMatrix offers seven additional
types. See the diagram that follows for a complete accounting.

E—
: | . | . 1 | : | - | I | o | .
IbooleanlIbase&ﬂBinarylIhexBinarylIfloatl IdoublellanyURIlIQNameIINOTATIONI Itimestampl
T
T
istringi iobjecti [olok| |decimal |
| | | E— T
! . . |
1 I I 1 | |
|pormalizedStrang| |char| |cleb| |1nteger| |biginteger| |bigdecimal
I
' | |
|_I_| T — — 1 T — 1
token |nonFositivelnteger | |nonNegative INnteger |
|1anguage||Name| |NHTOKEN| |negative1nteger| |10ng| |unsignedLong| |positive1nteger
[rcumez] [rmores]
|short, | |unsigned5hort|
|IDREFS | |ENTITIES | |byt,e | |unsignedByt,e|

ur types
built-in primitivwe types
builtc-in derived tcypes

complex types

OU00N

additional MetaMatrix built-in types

derived by restriction

derived by list

derived by extension or restriction

72

MetaBase Modeler User’s Guide, Release 4.2 SP2

Modeling User-Defined Functions
Built-in Datatypes with Runtime Types

BUILT-IN DATATYPES WITH RUNTIME TYPES

MetaMatrix associates a runtime type with each datatype (including built-in datatypes). This runtime type
defines how the MetaMatrix Server works with the values of that type during query execution.

The following image shows built-in datatypes and their associated runtime times defining how enterprise
information source data is accessed and manipulated using the MetaMatrix Server.

! ’ i
iali COmMplex t'ﬂ:&si ey SimpicType |
rm———
............. e e

!durat:i.on! !gYearHonth! !gYear! | gMonthDay! | gDay! !gHonth |E| time |:|date E !date]‘ime |
- o T

E |string|

:

: | R - A B l—ﬂ—‘ '

: | normalizedSt,Iing| Elchar| : |c.1c|b |E bigintegs: integer |bj_gj_m;eger|

H T t char = ciob b

E '-.....-..'-...:...- | | E
E token E |nonPosit,iveInt,eger | |nonNegat,iveInt,eger | E
. H y H H
E | lang’uage| |Na.me | |N}1I‘OI{EN| E |negative1nteger| E |10ng| El unsignedLong| |positive1nteger E

"
HMTOKENS

|short,|' |unsignedshort,| E

....... i

|unsigned.Elyt,e|

T I I

ur types

built-in primitive tCypes
derived by restriction
derived by list

complex types - - - -
—- — derived by extension or restriction

|
]
D built-in derived cypes
L]
(I

additional MetaMatrix built-in types

73

Creating User-Defined Datatypes
Datatype Definitions

DATATYPE DEFINITIONS

Following are samples and definitions for MetaMatrix built-in datatypes referenced in the two previous
illustrations.

Runtime Datatype

java.lang.String

Definition
anyURI represents a Uniform Resource Identifier Reference (URI). An anyURI value can be absolute or
relative, and may have an optional fragment identifier (i.e., it may be a URI Reference). This type should be
used to specify the intention that the value fulfills the role of a URI as defined by [RFC 2396], as amended
by [RFC 2732].

Runtime Datatype

java.lang.String

Definition
base64Binary represents Base64-encoded arbitrary binary data. The value space of base64Binary is the set

of finite-length sequences of binary octets. For base64Binary data the entire binary stream is encoded using
the Base64 Content-Transfer-Encoding defined in Section 6.8 of [RFC 2045].

Runtime Datatype

java.math.BigDecimal

Definition
bigdecimal represents arbitrary-precision signed decimal numbers. A bigdecimal consists of an arbitrary
precision integer unscaled value and a non-negative 32-bit integer scale, which represents the number of

digits to the right of the decimal point. The number represented by the bigdecimal is
(unscaledValue/10scale).

74 MetaBase Modeler User’s Guide, Release 4.2 SP2

Modeling User-Defined Functions
Datatype Definitions

Runtime Datatype

java.math.Biglnteger

Definition
biginteger represent arbitrary-precision integers. All operations behave as if bigintegers were represented in
two's-complement notation (like Java's primitive integer types).

Runtime Datatype

com.metamatrix.common.types.BlobType

Definition

blob represents a binary large object.

Runtime Datatype

java.lang.Boolean

Definition
boolean has the value space required to support the mathematical concept of binary-valued logic: {true,
false}.

Runtime Datatype

java.lang.Byte

Definition
byte is derived from short by setting the value of maxInclusive to be 127 and minInclusive to be -128. The
base type of byte is short.

75

amatrix

Creating User-Defined Datatypes
Datatype Definitions

Runtime Datatype

java.lang.Character

Definition

char represents a single character data type.

Runtime Datatype

com.metamatrix.common.types.ClobType

Definition

clob represents a character large object.

Runtime Datatype

java.sql.Date

Definition
date represents a calendar date. The value space of date is the set of Gregorian calendar dates as defined in

5.2.1 of [ISO 8601]. Specifically, it is a set of one-day long, non-periodic instances e.g. lexical 1999-10-26 to
represent the calendar date 1999-10-26, independent of how many hours this day has.

Runtime Datatype

java.lang.String

Definition
dateTime represents a specific instant of time. The value space of dateTime is the space of Combinations
of date and time of day values as defined in 5.4 of [ISO 8601].

76 MetaBase Modeler User’s Guide, Release 4.2 SP2

Modeling User-Defined Functions
Datatype Definitions

Runtime Datatype

java.math.BigDecimal

Definition
decimal represents arbitrary precision decimal numbers. The value space of decimal is the set of the values
i- n, where i and n are integers such that n >= 0.

The order-relation on decimal is:

x <yify-xis positive. The value space of types derived from decimal with a value for totalDigits of p is
the set of values i - n, where n and i are integers such that p >= n >= 0 and the number of significant
decimal digits in i is less than or equal to p. The value space of types derived from decimal with a value for
fractionDigits of s is the set of values i - n, where i and n are integers such that 0 <=n <=s.

Runtime Datatype
java.lang.Double

Definition

The double datatype corresponds to IEEE double-precision 64-bit floating point type [IEEE 754-1985].
The basic value space of double consists of the values m, where m is an integer whose absolute value is less
than 2753, and e is an integer between -1075 and 970, inclusive. In addition to the basic value space
described above, the value space of double also contains the following special values: positive and negative
zero, positive and negative infinity and not-a-number.

The order-relation on double is: x <y if y - x is positive. Positive zero is greater than negative zero. Not-a-
number equals itself and is greater than all double values including positive infinity.

Definition

duration represents a duration of time. The value space of duration is a six-dimensional space where the
coordinates designate the Gregorian year, month, day, hour, minute, and second components defined in
5.5.3.2 of [ISO 8601], respectively. These components are ordered in their significance by their order of
appearance i.e. as year, month, day, hour, minute, and second.

77

Creating User-Defined Datatypes
Datatype Definitions

Runtime Datatype

java.lang.String

Definition

ENTITIES represents the ENTITIES attribute type from [XML 1.0 (Second Edition)]. The value space of
ENTITIES is the set of finite, non-zero-length sequences of ENTITYSs that have been declared as unparsed
entities in a document type definition. The lexical space of ENTITIES is the set of white space separated
lists of tokens, of which each token is in the lexical space of ENTITY. The itemType of ENTITIES is
ENTITY.

Runtime Datatype

java.lang.String

Definition

ENTITY represents the ENTITY attribute type from [XML 1.0 (Second Edition)]. The value space of
ENTITY is the set of all strings that match the NCName production in [Namespaces in XML] and have
been declared as an unparsed entity in a document type definition. The lexical space of ENTITY is the set
of all strings that match the NCName production in [Namespaces in XML]. The base type of ENTITY is
NCName.

Runtime Datatype

java.lang.Float

Definition

float corresponds to the IEEE single-precision 32-bit floating point type [IEEE 754-1985]. The basic value
space of float consists of the values m, where m is an integer whose absolute value is less than 2724, and e is
an integer between -149 and 104, inclusive. In addition to the basic value space described above, the value
space of float also contains the following special values: positive and negative zero, positive and negative
infinity and not-a-number. The ordetr-relation on float is: x <y if y - x is positive. Positive zero is greater
than negative zero. Not-a-number equals itself and is greater than all float values including positive infinity.

78

MetaBase Modeler User’s Guide, Release 4.2 SP2

Modeling User-Defined Functions
Datatype Definitions

Runtime Datatype

java.lang.String

Definition
gDay is a Gregorian day that recurs, specifically a day of the month such as the 5th of the month. Arbitrary

recurring days are not supported by this datatype. The value space of gDay is the space of a set of calendar
dates as defined in 3 of [ISO 8601]. Specifically, it is a set of one-day long, monthly periodic instances.

Runtime Datatype

java.lang.String

Definition
gMonth is a Gregorian month that recurs every year. The value space of gMonth is the space of a set of

calendar months as defined in 3 of [ISO 8601]. Specifically, it is a set of one-month long, yeatly periodic
instances.

Runtime Datatype

java.lang.String

Definition
gMonthDay is a Gregorian date that recurs, specifically a day of the year such as the third of May. Arbitrary

recurring dates ate not supported by this datatype. The value space of gMonthDay is the set of calendar
dates, as defined in 3 of [ISO 8601]. Specifically, it is a set of one-day long, annually periodic instances.

Runtime Datatype

java.lang.String

Definition
gYear represents a Gregorian calendar year. The value space of gYear is the set of Gregorian calendar years

as defined in 5.2.1 of [ISO 8601]. Specifically, it is a set of one-year long, non-periodic instances (e.g. lexical
1999 to represent the whole year 1999), independent of how many months and days this year has.

79

amatrix

Creating User-Defined Datatypes
Datatype Definitions

Runtime Datatype

java.lang.String

Definition

gYearMonth represents a specific Gregorian month in a specific Gregorian year. The value space of
gYearMonth is the set of Gregorian calendar months as defined in 5.2.1 of [ISO 8601]. Specifically, it is a
set of one-month long, non-periodic instances e.g. 1999-10 to represent the whole month of 1999-10,
independent of how many days this month has.

Runtime Datatype

java.lang.String

Definition
hexBinary represents arbitrary hex-encoded binary data. The value space of hexBinary is the set of finite-
length sequences of binary octets.

Runtime Datatype

java.lang.String

Definition
ID represents the ID attribute type from [XML 1.0 (Second Edition)]. The value space of ID is the set of all

strings that match the NCName production in [Namespaces in XML]. The lexical space of ID is the set of
all strings that match the NCName production in [Namespaces in XML|. The base type of ID is NCName.

Runtime Datatype

java.lang.String

Definition
IDREF represents the IDREF attribute type from [XML 1.0 (Second Edition)]. The value space of IDREF
is the set of all strings that match the NCName production in [Namespaces in XML|. The lexical space of

IDRETF is the set of strings that match the NCName production in [Namespaces in XML]. The base type of
IDREF is NCName.

80

MetaBase Modeler User’s Guide, Release 4.2 SP2

Modeling User-Defined Functions
Datatype Definitions

Runtime Datatype

java.lang.String

Definition
IDREFS represents the IDREFS attribute type from [XML 1.0 (Second Edition)]. The value space of
IDREFS is the set of finite, non-zero-length sequences of IDREFs. The lexical space of IDREES is the set

of white space separated lists of tokens, of which each token is in the lexical space of IDREF. The
itemType of IDREFS is IDREF.

Runtime Datatype

java.lang.Integer

Definition
int is derived from long by setting the value of maxInclusive to be 2147483647 and minlnclusive to be -
2147483648. The base type of int is long.

Runtime Datatype

java.math.Biglnteger

Definition
integer is derived from decimal by fixing the value of fractionDigits to be 0. This results in the standard

mathematical concept of the integer numbers. The value space of integer is the infinite set {...,-2,-1,0,1,2,...}.
The base type of integer is decimal.

Runtime Datatype

java.lang.String

Definition

language represents natural language identifiers as defined by [RFC 1766]. The value space of language is
the set of all strings that are valid language identifiers as defined in the language identification section of
[XML 1.0 (Second Edition)]. The lexical space of language is the set of all strings that are valid language
identifiers as defined in the language identification section of [XML 1.0 (Second Edition)|. The base type of
language is token.

81

amatrix

Creating User-Defined Datatypes
Datatype Definitions

Runtime Datatype

java.lang.Long

Definition
long is derived from integer by setting the value of maxlInclusive to be 9223372036854775807 and
minlnclusive to be -9223372036854775808. The base type of long is integer.

Runtime Datatype

javalang.String

Definition
Name represents XML Names. The value space of Name is the set of all strings which match the Name

production of [XML 1.0 (Second Edition)]. The lexical space of Name is the set of all strings that match the
Name production of [XML 1.0 (Second Edition)]. The base type of Name is token.

Runtime Datatype

java.lang.String

Definition

NCName represents ML"non-colonized" Names. The value space of NCName is the set of all strings
which match the NCName production of [Namespaces in XML]. The lexical space of NCName is the set
of all strings that match the NCName production of [Namespaces in XML]. The base type of NCName is
Name.

Runtime Datatype

java.math.Biglnteger

Definition
negativelnteger is derived from nonPositivelnteger by setting the value of maxInclusive to be -1. This

results in the standard mathematical concept of the negative integers. The value space of negativelnteger is
the infinite set {...,-2,-1}. The base type of negativelnteger is nonPositivelnteger.

82

MetaBase Modeler User’s Guide, Release 4.2 SP2

Modeling User-Defined Functions
Datatype Definitions

Runtime Datatype

java.lang.String

Definition
NMTOKEN represents the NMTOKEN attribute type from [XML 1.0 (Second Edition)]. The value
space of NMTOKEN is the set of tokens that match the Nmtoken production in [XML 1.0 (Second

Edition)]. The lexical space of NMTOKEN is the set of strings that match the Nmtoken production in
[XML 1.0 (Second Edition)]. The base type of NMTOKEN is token.

Runtime Datatype

java.lang.String

Definition
NMTOKENS represents the NMTOKENS attribute type from [XML 1.0 (Second Edition)].The value
space of NMTOKENS is the set of finite, non-zero-length sequences of NMTOKENSs. The lexical space of

NMTOKENS is the set of white space separated lists of tokens, of which each token is in the lexical space
of NMTOKEN. The itemType of NMTOKENS is NMTOKEN.

Runtime Datatype

java.math.Biglnteger

Definition
nonNegativelnteger is derived from integer by setting the value of minlnclusive to be 0. This results in

the standard mathematical concept of the non-negative integers. The value space of nonNegativelnteger is
the infinite set {0,1,2,...}. The base type of nonNegativelnteger is integet.

Runtime Datatype

java.math.Biglnteger

Definition
nonPositivelnteger is derived from integer by setting the value of maxInclusive to be 0. This results in the

standard mathematical concept of the non-positive integers. The value space of nonPositivelnteger is the
infinite set {...,-2,-1,0}. The base type of nonPositivelnteger is integer.

83

amatrix

Creating User-Defined Datatypes
Datatype Definitions

Runtime Datatype

java.lang.String

Definition

normalizedString represents white space normalized strings. The value space of normalizedString is the set
of strings that do not contain the carriage return (#xD), line feed (#xA) nor tab (#x9) characters. The
lexical space of normalizedString is the set of strings that do not contain the carriage return (#xD) nor tab
(#x9) characters. The base type of normalizedString is string.

Runtime Datatype

java.lang.String

Definition

NOTATION represents the NOTATION attribute type from [XML 1.0 (Second Edition)]. The value
space of NOTATION is the set QNames. The lexical space of NOTATION is the set of all names of
notations declared in the current schema. NOTATION cannot be used directly in a model; rather a type

must be derived from it by specifying at least one enumeration facet whose value is the name of a
NOTATION declared in the model.

Runtime Datatype
java.lang.Object

Definition

object represents a java.lang.Object

Runtime Datatype

java.math.Biglnteger

Definition
positivelnteger is derived from nonNegativelnteger by setting the value ofminlnclusive to be 1. This

results in the standard mathematical concept of the positive integer numbers. The value space of
positivelnteger is the infinite set {1,2,...}. The base type of positivelnteger is nonNegativelnteget.

84

MetaBase Modeler User’s Guide, Release 4.2 SP2

Modeling User-Defined Functions
Datatype Definitions

Runtime Datatype

java.lang.String

Definition QName represents XML qualified names. The value space of QName is the set of tuples
{namespace name, local part}, where namespace name is an anyURI and local part is an NCName. The
lexical space of QName is the set of strings that match the QName production of [Namespaces in XML

Runtime Datatype

java.lang.Short

Definition
short is derived from int by setting the value of maxInclusive to be 32767 and minlnclusive to be -32768.
The base type of short is int.

Runtime Datatype

javalang.String

Definition

The string datatype represents character strings in XML. The value space of string is the set of finite-length
sequences of characters (as defined in [XML 1.0 (Second Edition)]) that match the Char production from
[XML 1.0 (Second Edition)]. A character is an atomic unit of communication; it is not further specified
except to note that every character has a corresponding Universal Character Set code point, which is an
integer.

Runtime Datatype

java.sql.Time

Definition
time represents an instant of time that recurs every day. The value space of time is the space of time of day
values as defined in 5.3 of [ISO 8601]. Specifically, it is a set of zero-duration daily time instances.

85

amatrix

Creating User-Defined Datatypes
Datatype Definitions

Runtime Datatype

java.sql. Timestamp

Definition

timestamp represents date that allows the JDBC API to identify this as an SQL TIMESTAMP value. It
adds the ability to hold the SQL TIMESTAMP nanos value and provides formatting and parsing operations
to support the JDBC escape syntax for timestamp values. Note: This type is a composite of a java.util. Date
and a separate nanoseconds value. Only integral seconds ate stored in the java.utilDate component. The
fractional seconds - the nanos - are separate. The standard ANSI SQL timestamp format is YYYY-MM-
DD HH:MM:SS[.xxxxxxxxx| Hours are 24-hour time. The nanoseconds are optional.

Runtime Datatype

java.lang.String

Definition

token represents tokenized strings. The value space of token is the set of strings that do not contain the line
feed (#xA) nor tab (#x9) characters, that have no leading or trailing spaces (#x20) and that have no internal
sequences of two or more spaces. The lexical space of token is the set of strings that do not contain the line
feed (#xA) nor tab (#x9) characters, that have no leading or trailing spaces (#x20) and that have no internal
sequences of two or more spaces. The base type of token is normalizedString.

Runtime Datatype

java.lang.Short

Definition
unsignedByte is derived from unsignedShort by setting the value of maxInclusive to be 255. The base type
of unsignedByte is unsignedShort.

Runtime Datatype

java.lang.Long

Definition
unsignedlInt is derived from unsignedLong by setting the value of maxInclusive to be 4294967295. The
base type of unsignedlnt is unsignedLong.

86

MetaBase Modeler User’s Guide, Release 4.2 SP2

Modeling User-Defined Functions
Datatype Definitions

Runtime Datatype

java.math.Biglnteger

Definition
unsignedLong is derived from nonNegativelnteger by setting the value of maxInclusive to be
18446744073709551615. The base type of unsignedLong is nonNegativelnteger.

Runtime Datatype

java.lang.Integer
Definition

unsignedShort is derived from unsignedInt by setting the value of maxlInclusive to be 65535. The base
type of unsignedShort is unsignedInt.

amatrix’ 87

Creating User-Defined Datatypes
User-Defined Datatypes

USER-DEFINED DATATYPES

You can create fully functioning models for publication to the SearchBase or for creation of runtime
metadata with the MetaMatrix Server using only the built-in datatypes. In fact, any models that your
organization created prior to version 3.0 of the MetaMatrix System use these types exclusively.

However, there may be occasions when the built-in datatypes are not a good match (e.g. different lengths,
minimum lengths, patterns, etc.). In these instances you can create new datatypes, selecting the most
appropriate built-in or custom type of base type.

The MetaMatrix MetaBase Modeler lets you derive your own user-defined datatypes to extend or restrict the
built-in datatypes. When you create your own datatype, you must define a runtime type associated with it.
Your organization can create its own datatypes for use in models you publish to the SearchBase or use to
create runtime metadata.

WHY CREATE USER-DEFINED DATATYPES?

Because your organization can model its information sources using only the basic, built-in datatypes,
modeling user-defined datatypes might seem an extraneous step in creating metadata models to describe
your information systems and your data consumption. However, creating your own user-defined datatypes
offers your organization many benefits.

When you create user-defined datatypes, you can use them enterprise-wide to describe information more
distinctly. You can create datatypes that describe the nature of the information more completely than the
existing datatypes.

For example, when confronted with the ZIPCode column within the Address Book database, you can
model this information easily as a string or an integer; however, if your organization creates a derived
datatype called “ZIPCodeDT,” you and other data modelers within this organization can use this new
datatype specifically to model ZIP codes.

By creating a custom user-defined datatypes, you can easily create rules that apply to information of that
datatype. You can set allowable values for that datatype by:

* Creating a pattern.
The pattern, a rule, describes the format of the data that the datatype can contain. For example,
for the ZIPCodeDT, you could set the allowable values to include 5 digits, or 9 digits, or 5
digits followed by a hyphen and then 4 more digits.

* Enumerating actual values.
Your datatype definition can include a list of actual values for the datatype. For example, you
could create a datatype called ZIPCodeStL to specify ZIP Codes in St. Louis, Missouri, and
establish that the allowable values for this datatype include 63043, 63141, 63104, and whatever
other values instances of this datatype can contain.

88

MetaBase Modeler User’s Guide, Release 4.2 SP2

Modeling User-Defined Functions
Creating User-Defined Datatypes

Once you have created a user-defined datatype, you can reuse that definition throughout your metadata
models and in different metamodels. For example, you can not only model the ZIPCode column from the
Address Relational database, using the Relational metamodel, but you can also use the ZIPCodeDT to
model information within your XML data sources and others.

CREATING USER-DEFINED DATATYPES

When you model user-defined datatypes, you base your new datatype upon existing built-in datatypes or
other user-defined datatypes. This ensures that you can use information modeled using your user-defined
datatypes within your runtime metadata if you’re using the MetaMatrix Server for data access.

The most basic datatype user-defined derive directly from the built-in datatypes. For example, the
ZIPCodeDT datatype relates directly to the integer built-in datatype. As such, it bears most of the
characteristics of the integer datatype, but extends or limits the integer to a specific purpose or content:

ZIPCodeDT
Pattern: ##i#i#

This new ZIPCodeDT represents an integer that has the pattern of having five numbers in it. When you
model a column as a ZIPCodeDT, it has all the characteristics of an integer but it only allow values
comprised of five-digit numbers.

Once you have created user-defined datatypes, you can further extend or limit those datatypes according to
your need. Again, your new user-defined datatypes bear the characteristics of the parent datatype and
ultimately the characteristics of the base datatype:

ZIPCodeDT
Pattern: #####

ZIPCodeLA

Pattern: ##it##
Allowed Values:
90028, 91316...

ZIPCodeChi

Pattern: ##itit#
Allowed Values:
60035, 60608...

The ZIPCodelLA and ZIPCodeChi datatypes both have the same patterns as their parent datatype,
ZIPCodeDT, but each limits the allowed values, by enumeration, to certain literal values. Ultimately, both
share characteristics of the built-in integer datatype.

amatrix 89

Creating User-Defined Datatypes
Modeling the User-Defined Datatypes

MODELING THE USER-DEFINED DATATYPES

Within the MetaBase Modeler, you define your user-defined datatypes in a metadata model. You can then
include this metadata model in projects with your other physical or virtual metadata models to use your
user-defined datatypes within those metadata models.

Each datatype model can contain one or more user-defined datatypes. A complete set of your organization’s

atatypes, contained within a metadata model, can be a complete data dictionary for your organization
dat tained with tadat del, b plete data dictionary for y fec tion,
providing users a single place to learn about your site’s information types.

Creating the Datatype Model

You can create a datatype model the same way that you create physical or virtual models from other
metamodels. Your datatype model, however, is a physical model to include in projects where you want to
use the models.

To create a derived datatype model:
1. From the menu, select New > Metadata Model.
2. Click the Next button. Enter a File Name. Select the Metamodel type XML Schema (XSD).
The Model Type defaults to Datatype Model.

T New Model Wizard X

Mew Model Wizard

Specify file name and location, type of model, then create model file,

Location: | CuskamerServicelnguiry Erowse, ..

File Mame: | Datakypes

Metamodel: (EEISSEE LA]

Maodel Type: |Datatype Model j

Select a model builder {optional):

@‘ Copy Fram an existing model of the same metamodel

| Finish | Cancel

90 MetaBase Modeler User’s Guide, Release 4.2 SP2

3. Click the Finish button.

= Model Initializer

Modeling User-Defined Functions
Modeling the User-Defined Datatypes

X

Select a ukility to initialize the model,

#ML Schema |]
#ML Schema (2000)
#ML Schema (1999)

Descripion:

I| Create an #ML Schema using the 2001 verion

4. Next you are presented with a selection menu for the version of XML schema being applied.

& MetaBase Modeler - Datatypes.xsd - MetaMatrix MetaBase Modeler.

File Edit Refactor Mavigate Search Project Metadata Run Window Help

B-HEFE | K|S 7d-e -

CEX

_ﬁi Maodel Explorer

+ | welcarme: [S] *Datatypes.xsd x|

NEERIEED

@ #5D Schemas }

|- Ta CustomerServiceInguiry Element] Location] Schema Loc...] Target Nar. ..] Final Def ault] Elock Default] Attribute F... J Elem
=-[S] Datatypes.xsd xsdischema file:fiC:fmet. .. {unqualified) {ung
[S] Datatypes.xsd
Model Explorer | Outline
= Properties G E o < >
Property [value | [Table Editor | 5] Semantics | = Source
B MetaBase Consale H x

Properties iDascriptinn

Problems | Message Log | MetaBase Console

5. By right-clicking on the schema diagram in the Editor Panel, you can select New Child and
then add atomic, list, union datatypes, and a host of other definition types.

gigy metamatrix®

91

Chapter 9:
Creating and Editing Meta Objects

CREATING META OBJECTS

When you model your existing data sources or create your transformed virtual classes, you need to create
meta objects to represent the information.

You can create these meta objects in the following ways:
* Using the Model Explorer view to create the meta objects. This method organizes the meta

objects in a hierarchical fashion, offering a quick way to start your metadata model. For more
information, see “Creating Meta Objects on the Model Explorer View.”

* Using the Table Editor to rapidly enter multiple meta objects.

* Using diagrams in the Editor Panel view.

92

gigy metamatrix:

Modeling User-Defined Functions
Creating Meta Objects on the Model Explorer View

CREATING META OBJECTS ON THE MODEL EXPLORER

VIEwW

You can create meta objects directly on the Model Explorer view. The MetaBase Modeler constrains the
types of meta objects you can create based upon the meta object you select and the metamodel of the
metadata model in which you want to create the new meta object. You cannot create a Column attribute in
a Stored Procedure class, nor can you create a Column meta object in a model based on the Data Access

metamodel.

To create meta objects on the Model Explorer view:

1. Select the parent meta object to which you want to add a child. For example, you can add a

package to a package or an attribute to a class.

2. Right-click on the meta object. From the pop-up menu, select New Child. You can now select

the meta object you would like to add.
—-[zm Customerseryicelnguiry
- EE C5data. xmi
E% *% Package Diagram

Mew]

*2 Package Diag

Mew Child = Schema
O
pen] B Wiew
Cpen With
Open As p | OO Catalog
< Procedure
=] Copy
[E 4 Index
1, Logical Relationship
% Delete
B Base Table
Mowve, ..
S #3 Custom Diagram

3. The new meta object displays on the Model Explorer view.

—|-Ta@ CuskomerServicelnguiry
.project

= f% Cuskameringuiry ., xmi

%3 Package Diagram

=l ey EaseT able

E-@ TransFaormation Diagram

4. 'The new object is highlighted for renaming.

tamatrix

93

Creating and Editing Meta Objects
Viewing Meta Objects in the Table Editor

VIEWING META OBJECTS IN THE TABLE EDITOR

The MetaBase Modeler includes a table-based meta object viewer and editor, called the Table Editor.
Using the Table Editor, you can review meta objects, edit existing meta objects, and create new objects
quickly in the Editor Panel view.

To open the Table Editor:

1. On the Model Explorer or Outline tab, select the model or meta objects you want to view or
edit in the table.

2. Switch the Editor Panel view to the Table Editor view by clicking the tab at the bottom of
the view.

‘welcome Sdata.xmi *Customeringuiry. xmi x MNewCust(3.xmi

B Base Tables | B Columns Foreign Keys | 4 Jdbc Import Settingss | 4+ Jdbe Sources | [F] Primary Keys | B3 Schemas

Hame | Location ‘ Mare In Source: | Swskemn | Cardinality ‘ Supports Update | Logical Relationships | Description
PARTS PARTSSUPPLIER. PARTS False 16 true [1
SHIP_YIA PARTSSUPPLIER. SHIP_VWIA False 4 true 1
STATUS PARTSSUPFLIER. STATUS false 3 true 1
SUPPLIER PARTSSUPPLIER. SUPPLIER false 16 true 1
SUPPLIER_PARTS PARTSSUPFLIER SUPPLIER_PA... false 227 true [1
MewBaseTable False 1] true M

%} Package Diagram | [=] Table Editar <::|

The tabs that display depend upon the model’s metamodel and the contents of each
metamodel.

3. Once you have opened the Table Editor, you can:

* Edit the existing properties. For more information, see “Editing Meta Objects in the Table
Editor.”

* Add a new meta object. For more information, see “Creating Meta Objects in the Table
Editor.”

* Add meta objects from your workspace to the table.

* DPaste meta object information from your clipboard into the table. For more information,
see “Pasting into the Table Editor.”

* Print your tables.

94

MetaBase Modeler User’s Guide, Release 4.2 SP2

Modeling User-Defined Functions
Viewing Meta Objects in the Table Editor

You can use the Table Editor to edit properties of a metaobject in the table.

Typically, you can edit properties that use an edit box or a drop-down list to enter their values on the
Properties view, such as Datatype and Name In Source. You cannot edit business metadata, such as
keywords or descriptions.

To edit meta objects in a table:
1. On the Model Explorer view, select the meta objects you want to view or edit in the table.
2. From the Editor Panel view, sclect the tab to toggle on the Table Editor.

3. The Table Editor displays the contents of each metamodel. This sample displays a model
using the Relational metamodel:

B Base Tables | B Calumns Foreign Keys | 4 Jdbc Import Settingss | < Jdbc Sources | [F] Primary Keys | B3 Schemas

Marne ‘ Location | Mame In So... | Native Type | Length | Length Fixed | Mumeric Pr... | Numetic Scale | #
PART_MAME PARTS PART_MAME WARCHARZ 255 False o 0

PART_COLOR PARTS PART_COLOR WARCHARZ 30 false o o

PART_WEIGHT PARTS PART_WEL.. WARCHARZ 255 false o 1]

SHIFPER._ID SHIP_VYIA SHIPPER_ID NUMEER o true z 0

SHIFPER._MA... SHIP_VIA SHIPPER_M... WARCHARZ 30 False o 0

STATUS_ID STATUS STATUS_ID MUMBER o true 2 o

STATUS_MAME STATUS STATUS_M... WARCHARZ 30 false o 1]

SUPPLIER_ID SUPPLIER SUPPLIER_ID WARCHARZ 10 false o 0

SUPPLIER._N... SUPPLIER SUPPLIER_... WARCHARZ 30 false o 0

SUPPLIER_S... SUPPLIER. SUPPLIER_... MNUMBER o true 2 a

SUPPLIER_C... SUPPLIER SUPPLIER_... WARCHARZ 30 false o] a

SUPPLIER._S... SUPPLIER SUPPLIER_... WARCHARZ z false o 0

SUPPLIER._ID SUPPLIER._... SUPPLIER_ID WARCHARZ 10 false o 0

PART_ID SUPPLIER._... PART_ID CHAR 4 true o o

QUANTITY SUPPLIER ... QUANTITY NUMBER a true 3 a i
< >

%3 Package Diagram | [Table Editor

4. You can click certain properties and manually edit them in the Table Editor.

5. The changes you make impact your model.

95

Creating and Editing Meta Objects
Viewing Meta Objects in the Table Editor

Creating Meta Objects in the Table Editor

You can create meta objects in the Table View. When you create a meta object, you create it as a sibling of
other meta objects in the table; it is the same type of meta object as the tab you are viewing and belongs to

the same parent meta object.

For example, if you are reviewing columns in the table, you can add other columns, and they will belong to
the same parent base table, view, or result set as the others in the table. If your table displays more than one
set of columns, belonging to more than one parent class, you can select in which class you want to create

the new column.

To create meta objects in a table:

1. On the Model Explorer view, select the meta objects you want to view in the table.

2. Switch the Editor Panel view to the Table Editor view by clicking the tab at the bottom of

the view.

‘welcome Sdata.xmi *Customeringuiry. xmi

x

MNewCustQ3.xmi

B Base Tables | B Columns Foreign Keys | 4 Jdbc Import Settingss | 4+ Jdbe Sources | [F] Primary Keys | B3 Schemas

SUPPLIER_PARTS PARTSSUPPLIER. SUPPLIER_PA...
NewBaseTable

False
False

227
i}

trug
trug

Hame | Location ‘ Mare In Source: | Swskemn | Cardinality ‘ Supports Update | Logical Relationships | Description
PARTS PARTSSUPPLIER. PARTS False 16 true [1
SHIP_YIA PARTSSUPPLIER. SHIP_VWIA False 4 true 1
STATUS PARTSSUPFLIER. STATUS false 3 true 1
SUPPLIER PARTSSUPPLIER. SUPPLIER false 16 true 1

% Package Diagram | [Table Editor <::|

3. The Table Editor displays details for the meta object you selected.

4. Click the tab of the meta object type you want to add.

5. In the table, click a child of the parent meta object to which you want to add the new meta

object.

96

MetaBase Modeler User’s Guide, Release 4.2 SP2

Modeling User-Defined Functions
Viewing Meta Objects in the Table Editor

6. From the Editor Panel view, right-click on metadata in the Name column. Select Insert Rows
from the drop-down menu.

B Base Tables | B Columns Foreign Keys | < Jdbc Import Settingss
Mame | Location | Mame In Source | Mative T...
PART_ID PARTS PART_ID ZHAR.
PART_MAME PARTS PART_MAME WARCHARZ
PART (COLOR PARTS PART _COLOR, WARCHARZ
PART_WEIGHT PARTS PART _WEIGHT WARCHARZ
SHIP_WIA SHIPPER_ID MUMEER.
! p || vaRCHAR
STATUS_ID sy Mew Chid * I uuMBER
STATUS_MAME 574 Mew Sibing Y | vARCHARZ
SUPPLIER_ID sl Mew Association 4 WARCHARZ
SUPPLIER_MAME Sul WARCHARSZ
SUPPLIER_STATUS Sl & Undo Display Diagram 5 MUMBER.
SUPPLIER_CITY =t WARCHARZ
SUPPLIER_STATE SUI & WARCHARZ
SUPPLIER_ID =t} WARCHARZ
PART ID suf o Cut CHAR
< Copy
* Diagram Editor | [[
- | o
1 Clone
8 Delete
Rename
Cpen

7. You also can use the Insert Rows into Table button in the top menu bar of the modeler.

8. In the Insert Rows dialog box, use the up and down arrow buttons to enter the number of
rows you want to insert.

: X

Insert Rows

1 row will be inserted

Mumbeer of Rows: | 1 :
a4 | Cancel |

9. Click OK. A new row displays immediately beneath the row you clicked.

You can edit the properties of this new meta object. The new meta object becomes part of your model; you
will see it in your workspace when you exit the Table Editor.

97

Creating and Editing Meta Objects
Viewing Meta Objects in the Table Editor

If you have a Microsoft Excel spreadsheet or other file that contains meta object property information, you
can copy that information onto your operating system’s clipboard and paste the information into the Table
Editor.

The contents of this file must be tab-separated, but not comma-separated. The MetaBase Modeler will paste
this information as metamodel-specific meta objects of a certain type, determined by the tab onto which
you paste this information.

This paste function enables you to paste a block of contiguous rows and columns of property values into
the table. This means you can populate many columns of information, not necessatrily all. For example, if
you have a spreadsheet containing meta object Names, Datatypes, and Descriptions, you can arrange your
table and paste only that information into the table and can set other property values later. You cannot,
however, paste namespace or location information into the table.

To paste items from the clipboard:
1. Toggle your Editor Panel to Table Editor using the tab at the bottom of the view.

2. Copy the information for the meta objects you want to create onto the system clipboard from
Microsoft Excel.

3. Click the tab that corresponds to the meta object type this information represents. For
example, to paste classes, click the Base Tables, Views, or Groups tab.

4. From the Editor Panel view, select Insert Rows. Repeat this step once for each row you want
to paste; if you copied 20 rows to the clipboard, you must insert 20 rows.

5. Click the first of the new rows in the left-most column, typically Name.
6. From the Editor Panel view, select Paste Clipboard Contents into Table.

The rows you selected display in the model. These new meta objects become a part of your metadata model.
You can create relationships, derive virtual metadata, and use these meta objects as any others.

You might encounter difficulties if you try to paste too many rows or if you try to paste invalid information.

98

MetaBase Modeler User’s Guide, Release 4.2 SP2

Modeling User-Defined Functions
Viewing Meta Objects in the Table Editor

Pasting Too Many Rows

Your paste operation might encounter problems if you attempt to paste more rows than you have created
new rows. If you do, the Reconcile Clipboard Paste dialog box displays.

e
1

Reconcile Clipboard Paste

Paste Status

A Warning messages exist but paste data is valid. Select OF butkon to
paste daka.

Paste Data

Mame In Source | System |

one alpha

ki beta
& three & gamma
& Four & epsilon

Messages (0 Errars, 4 Watnings, 0 Infos)

| Pashe Columin | Paste Data | Description |

A Mame In Source three Rove does nok Fit, Paste data will not be used,
A Syskem gamma Rowe does not fit, Paste data will not be used,
A Mame In Source Four Rove does nok Fit, Paste data will not be used,
A System epsilon Fowe does not Fit, Paste data will not be used,

[0]4 | Cancel

You can click OK to paste the information anyway; this discards the information that is highlighted. Or you
can click Cancel and alter either your existing table by adding rows for that information, or the dimensions
of the data you are importing.

Other Limitations

There is no ability to re-order table columns once they have been imported. All modifications must be
done in Microsoft Excel prior to the cut-and-paste.

The Table Editor feature is not designed for creating new objects. This means that you cannot “paste” an
entirely new object, specifying its parent name.

Location is not a valid paste field. You cannot change an object’s parent in the table.

Since each tab is only one entity type (one for tables, one for columns), it is problematic to build an entire
model by cutting and pasting spreadsheets.

Table Editor Column Sorting and Hiding

You can specify the order of columns in the table editor. You can also hide columns. Settings become
available for a specific table type after it has been opened once. These settings can be accessed in one of
two ways. First, you can navigate to MetaBase Modeler Preferences > Editor in the preferences dialog.

n metamatrix’ 99

Creating and Editing Meta Objects
Viewing Meta Objects in the Table Editor

There will be a two tabs present, one for Tables and one for Transformations with the new settings on
the Tables tab.

= Preferences

[#- Workbench ' Editor
- Build Order ;
[#-Help Table | Transformation
InstalUpdate Preferences for a given table will only be present if the table editor tab
- Java for it has been viewed, After restoring defaults, the table editor must be
[=- MetaBase Modeler viewed again for the default preferences to become visible,
~Debug Table Columns
- Diagram
. Base Tables Column I Visible I
- Yalidation CD"‘".T'HS Location Yes
- Plug-In Devel t Pareign Keys Name Yes
[+ Plug-In Developmen Pri ke
rmary Reys Mame In Source fes
System fes
Cardinality Yes
Supports Update Yes .
Materialized Yes Ll
Logical Relations... Yes
Description Yes
Restore Defaults 1 Apply I

Import. .. Export... oK I Cancel l

The settings can also be accessed by right-clicking on the table editor and selecting Table Editor
Preferences. Table types with columns available for preference settings are shown in the left hand column.

£+ Table Editor Preferences

Sreferences for 3 given table will only be present if the table editor tab
for it has been viewed, After restoring defaults, the table editor must be
viewed again for the default preferences to become visible,

Table Columns

Ea Tables Column | visible |

Columns -

Foreign Keys h‘?_ﬁ:m :::

Pri ke

AMAry REys Mame In Source fes

System Yes
Cardinality Yes
Supports Update Yes
Materialized Yes
Logical Relations... Yes
Description Yes

Ok I Cancel

100 MetaBase Modeler User’s Guide, Release 4.2 SP2

Modeling User-Defined Functions
Editing Meta Object Properties

Individual columns are shown for the selected table type in the right hand column. Clicking on the yes or
no option next to the column name determines column visibility. Column order is changed by selecting a
column and using the up and down buttons next to the column list to change its order. Selecting the
Restore Defults button resets the default order and visibility of columns for a particular table. Note that
there is no Restore Defaults button on the dialog presented with the right-click method. You can still
restore defaults by selecting the table in the left hand column, right-clicking, and choosing the Restore
Defaults menu option. Either method will cause the table to be removed from the preferences list. The
table will not reappear until you have opened a new editor that contains that specific table type.

EDITING META OBJECT PROPERTIES

In addition to the Table Editor, you can use the Properties tab of the Properties view to change a meta
object’s properties. To edit a meta object’s properties on the Properties view:

1. On the Model Explorer tab, select the meta object you want to modify.

NOTE: You can also select a meta object in the Editor Panel view.

2. The properties display on the Properties view. The names and natures of the properties
depend upon the type of meta object you selected.

&= Propetties = }:b E'g. v X
Property | Yalue

Cardinality 14

Logical Relationships

Marne = SHIP_NIA

Marme In Source = SHIP_NIA

Supports Update [k true

Syskem v False
Properties | Descripkion

3. Click the value beside the property you want to change and type the new value.

= Properties = j'f:b E‘ v X
Froperky | Value

Cardinality 14

Logical Relationships

Mame F= SHIP _WIA

Marme In Source SHIPPIMG METHOD

Supports Update % krue

Syskem ik False

Properties | Description

metamatrix’ 101

Creating and Editing Meta Objects
Manipulating Meta Objects

L]
4. Note that some properties are read-only; you cannot select or modify all properties. The
MetaBase Modeler saves the changes you have made to your local directory. Remember, the
changes you make do not reside in the MetaBase Repository until you add the model or check
in your changes using the MetaBase Repository Manager.

There is a new property on virtual tables named Materialized. Setting this property's value to true (the
default is false) allows the data generated for this Virtual table to be stored as a materialized view using the
MetaMatrix Server.

= BB v x
Property | Yalue

Cardinality 1 0

Logical Relations.., = []

Materialized

Marne

Marne In Source
Supparts Updake
Svskem

Properties |Descripkion

There is a Restore Default Value button in the properties toolbar. Clicking this button (when active) will
reset the highlighted property to its default null value. =

MANIPULATING META OBJECTS

Once you create meta objects in one or more metadata models, the MetaBase Modeler provides you several
handy ways to manipulate them. The MetaBase Modeler supports the common functions of cut, copy, and
paste, but also adds a special clone function to

You can:

* Cut a meta object and its children from their current location and place it on the clipboard to
paste elsewhere.

* Copy a meta object and its children, leaving it in the current location and placing a copy of it
on the clipboard to paste elsewhere.

* DPaste a cut or copied meta object and its children into a different location.

* DPaste a cut or copied meta object and its children into a different location in a different
metamodel. For more information, see “Pasting Meta Objects.”

* Clone a meta object and its children, placing a copy of the meta object and its children in the
same location, so that the copied meta object is a sibling to that which it copies.

1 02 MetaBase Modeler User’s Guide, Release 4.2 SP2

	Modeling Data
	The Business Challenge
	The MetaMatrix Solution
	The MetaMatrix System

	What is Metadata?
	Editing Metadata Vs. Editing Data
	Metadata Models
	Business and Technical Metadata
	Technical Metadata
	Business Metadata

	Physical and Virtual Metadata
	What Is An Enterprise Information System?
	Modeling Your Enterprise Information Systems
	Modeling Your Enterprise Data Needs

	Modeling Metadata Transformations
	Metadata Transformations
	SQL in Transformations
	Mapping XML Transformations

	Design-Time and Runtime Metadata
	Design-Time Metadata
	Runtime Metadata

	Metamodels in the MetaBase Modeler
	What is a Metamodel?
	Metamodels in the MetaBase Modeler
	Metamodel Extensibility
	Available Metamodel Types
	The Relational Metamodel
	The Data Access Metamodel
	The XML Metamodels
	Choosing a Metamodel

	Getting Started with the MetaBase Modeler
	What is the MetaBase Modeler?
	Using the MetaBase Modeler Workspace
	Modeling Metadata Locally
	Opening the MetaBase Modeler Workspace Window
	Running the Application

	Viewing the MetaBase Modeler Workspace Window
	Workspaces and Projects

	Modeling Your Metadata

	Creating Metadata Models
	Create a Project
	Creating a New Physical Model
	Creating a New Virtual Model
	Creating a New Virtual Model from an Existing Model
	Copying an Existing Workspace Model
	Closing a Project

	Importing Metadata
	The Metadata Import Wizard
	Purpose of the Wizard
	Import Plug-in Extensibility

	Importing an XML Schema Document
	Importing from a MetaMatrix Model File
	Quick Import and Copy of Existing Metamodels and XML Schema Documents
	Copy and Paste Method

	Importing from a JDBC Database
	Using the Metadata Import Wizard

	Importer for ERwin 3.5.2 Models
	Importer for Rational Rose Models
	Adding Relationships to UML Models

	Connection Information in Metadata Models
	Connection-Related Meta Objects
	Refreshing Metadata

	Navigating Metadata
	Navigating the Model/Explorer Tree
	Buttons in the Model Explorer View
	Icons in the Model Explorer View

	Creating User-Defined Datatypes
	What are Datatypes?
	Built-In Datatypes
	Built-in Datatypes with Runtime Types
	Datatype Definitions
	anyURI
	Runtime Datatype
	Definition

	base64Binary
	Runtime Datatype
	Definition

	bigdecimal
	Runtime Datatype
	Definition

	Biginteger
	Runtime Datatype
	Definition

	blob
	Runtime Datatype
	Definition

	boolean
	Runtime Datatype
	Definition

	byte
	Runtime Datatype
	Definition

	char
	Runtime Datatype
	Definition

	clob
	Runtime Datatype
	Definition

	date
	Runtime Datatype
	Definition

	dateTime
	Runtime Datatype
	Definition

	decimal
	Runtime Datatype
	Definition

	double
	Runtime Datatype
	Definition

	duration
	Definition

	ENTITIES
	Runtime Datatype
	Definition

	ENTITY
	Runtime Datatype
	Definition

	float
	Runtime Datatype
	Definition

	gDay
	Runtime Datatype
	Definition

	gMonth
	Runtime Datatype
	Definition

	gMonthDay
	Runtime Datatype
	Definition

	gYear
	Runtime Datatype
	Definition

	gYearMonth
	Runtime Datatype
	Definition

	hexBinary
	Runtime Datatype
	Definition

	ID
	Runtime Datatype
	Definition

	IDREF
	Runtime Datatype
	Definition

	IDREFS
	Runtime Datatype
	Definition

	int
	Runtime Datatype
	Definition

	integer
	Runtime Datatype
	Definition

	language
	Runtime Datatype
	Definition

	long
	Runtime Datatype
	Definition

	Name
	Runtime Datatype
	Definition

	NCName
	Runtime Datatype
	Definition

	negativeInteger
	Runtime Datatype
	Definition

	NMTOKEN
	Runtime Datatype
	Definition

	NMTOKENS
	Runtime Datatype
	Definition

	nonNegativeInteger
	Runtime Datatype
	Definition

	nonPositiveInteger
	Runtime Datatype
	Definition

	normalizedString
	Runtime Datatype
	Definition

	NOTATION
	Runtime Datatype
	Definition

	object
	Runtime Datatype
	Definition

	positiveInteger
	Runtime Datatype
	Definition

	QName
	Runtime Datatype

	short
	Runtime Datatype
	Definition

	string
	Runtime Datatype
	Definition

	time
	Runtime Datatype
	Definition

	timestamp
	Runtime Datatype
	Definition

	token
	Runtime Datatype
	Definition

	unsignedByte
	Runtime Datatype
	Definition

	unsignedInt
	Runtime Datatype
	Definition

	unsignedLong
	Definition

	unsignedShort
	Runtime Datatype
	Definition

	User-Defined Datatypes
	Why Create User-Defined Datatypes?
	Formalizing a Data Dictionary
	Describing Data Rules in Detail
	Reusing Datatypes

	Creating User-Defined Datatypes
	Deriving from Built-In Datatypes
	Deriving from Other User-Defined Datatypes

	Modeling the User-Defined Datatypes
	Creating the Datatype Model

	Creating and Editing Meta Objects
	Creating Meta Objects
	Creating Meta Objects on the Model Explorer View
	Viewing Meta Objects in the Table Editor
	Using the Table Editor
	Editing Meta Objects in the Table Editor
	Creating Meta Objects in the Table Editor
	Pasting into the Table Editor
	Pasting Too Many Rows
	Other Limitations

	Table Editor Column Sorting and Hiding

	Editing Meta Object Properties
	Materialized Views
	Restore Default Values

	Manipulating Meta Objects
	What is the Clipboard?
	Cutting Meta Objects
	Copying Meta Objects
	Cloning Meta Objects
	Pasting Meta Objects
	Reordering Meta Objects

	Adding Descriptions to Meta Objects
	Using Diagrams in the MetaBase Modeler
	What Are Diagrams?
	What is a Package Diagram?
	What is a Transformation Diagram?
	What is a Dependency Diagram?
	What is a Mapping Diagram?
	What is an XML Transformation Diagram?
	What is a Custom Diagram?

	Viewing a Diagram
	Opening a Diagram
	Diagramming Tasks

	Components of the Diagram
	Models
	Categories, Schema, and Catalogs
	Groups, Base Tables, and Views
	Virtual Groups, Base Tables, and Views
	Mapping Classes
	Staging Tables for XML Documents
	Procedures
	Input Sets
	Elements and Columns
	Primary Keys
	Foreign Keys
	Unique Constraints
	Access Patterns
	Links
	Transformation
	XML Fragment Link
	XML Mapping Link

	Navigating the Diagram
	The Outline View and Diagram Thumbnail

	Modeling Data in a Diagram
	Creating Meta Objects in the Diagram
	Creating a New Package in the Editor Panel View
	Creating a New Class in the Editor Panel View
	Creating a New Attribute in the Editor Panel View

	Creating Relationships
	Creating Custom Diagrams
	Creating and Populating a Blank Custom Diagram
	Creating a New Custom Diagram from a Model or Table

	Modeling Transformations
	What Is Virtual Metadata?
	Metadata Abstraction in the Modeler
	Virtual Attributes
	Basic Virtual Attributes
	Transforming Attributes

	Virtual Classes
	Creating Views with Virtual Classes
	Creating Unions with Virtual Classes

	Virtual Metadata and Data Access
	Integration with the MetaMatrix Server
	Integration with the MetaMatrix XA Server

	Creating a Transformation
	Creating a Simple Transformation
	Creating a Union Transformation
	Example: Union of Two or More Source Tables with Compatible Column Data
	Example: Add As Union Source table to reconciled/valid Non-Union Query

	Using the Transformation Editor
	Enabling or Disabling Transformation Types
	Removing Transformation Sources
	Using the Criteria Builder
	Using the Expression Builder
	Expanding a Select Clause
	Searching and Replacing in a Transformation
	Validating Your Transformation
	Reconciling Target Attributes
	Setting Transformation Editor Preferences
	Using Short SQL Symbol Names

	Procedural-to-relational Mapping
	Creating Procedures for Updates
	How an Update Procedure Works
	Procedure Language Basic Structure
	Procedure Statements
	Command Statement
	DECLARE Statement
	Assignment Statement
	IF Statement
	ERROR Statement

	Special Variables
	INPUT Variables
	CHANGING Variables
	The ROWS_UPDATED Variable

	Processing SQL Criteria in a User’s Command
	HAS CRITERIA
	TRANSLATE CRITERIA

	A Sample Procedure
	Insert
	Update
	Delete

	Use Default Procedure

	Virtual Procedures
	Virtual Procedure Language Basic Structure
	Statements Not Used in Virtual Procedures
	Statements Used in Virtual Procedures
	Command Statement
	DECLARE Statement
	Assignment Statement
	IF Statement
	LOOP Statement
	WHILE Statement
	CONTINUE Statement
	BREAK Statement
	SELECT INTO Statement
	ERROR Statement

	Processing Procedure Inputs
	Sample Virtual Procedures

	Adding Duplicate Objects to a Transformation Diagram
	Viewing Dependency Diagrams

	Mapping Other Data Sources to XML
	Why Map Non-XML Sources to XML?
	XML Schema and XML Documents
	The Types of XML Files
	XML Files and Metadata Models

	Mapping Sources to XML Documents
	Using XML Schema Files and Documents
	Importing XML Schema Metadata
	Creating an XML Schema Metadata Model

	Creating a Virtual XML Document Model
	Creating New Models from XML Schema
	Creating a Limited Document Model
	Creating a Simple XML Document
	Working With XML Document Models

	Identifying Namespaces
	Namespacing for Global Elements
	Namespacing for Local Elements
	Default Namespace
	Namespace with Declared Prefix
	Qualification with Default Namespaces
	All Elements Qualified

	What Are Mapping Diagrams?
	Reviewing a Mapping Diagram
	Reviewing an XML Transformation Diagram

	Using Mapping Classes
	Automatically Generating Mapping Links
	Adding a Mapping Class
	Merging Mapping Classes
	Splitting Mapping Classes
	Deleting Mapping Classes
	Adding Attributes to Mapping Classes
	Deleting Attributes from Mapping Classes

	Repeating Tags in XML Without Mapping Classes
	Creating Transformations and Mappings
	Creating XML Transformations

	Using the Input Set
	Role of the Input Set
	Using the Input Set Editor

	Using the Recursion Editor
	Handling Recursive XML Schema
	Using the Recursion Editor

	Using the Choice Editor
	Opening the Choice Editor
	Excluding Options
	Editing the Choice Criteria
	Setting Choice Element Order
	Setting a Default Choice Action

	Using a Staging Table
	Improving Data Access with Staging Tables
	Using Staging Tables
	Creating a Staging Table
	Populating a Staging Table
	Using Input Sets with Staging Tables
	Using Staging Tables in XML Transformations
	Removing a Staging Table
	Deleting a Staging Table

	Creating a Virtual Database
	Creating a Virtual Database Definition
	Synchronizing

	Modeling for Information Integration
	Special Considerations for Information Integration
	Establishing Access Patterns
	What is an Access Pattern?
	Inserting an Access Pattern Meta Object

	Creating Procedures
	A Sample Procedure
	Modeling a Procedure

	Using the Metadata Tools
	Viewing Datatypes
	Viewing the Data Dictionary

	Error Analysis and Rebuilding the Project
	Setting Validation Preferences
	Manual Error Analysis

	Comparing a Model to Its Last Save
	Modeler Command Line Application
	Comparing Models
	Refreshing Imported Models

	Managing The Workspace
	Exporting DDL Models
	Exporting a DDL File

	Editing User Preferences
	Editing General Preferences
	Editing Debug Preferences
	Editing Diagram Preferences
	Editing Editors Preferences
	Editing Validation Preferences
	Preferences Tabs from Plug-ins

	MetaBase Repository and the Team Repository
	Sharing Projects and Files
	The MetaBase Repository View
	Sharing a Project or Model
	Unsharing a Project
	Adding a Project or Model to a Shared Team Repository
	Get the Latest Version
	Checking Models and Projects Out and Back In to the Team Repository
	Showing Iteration Histories
	Repository Properties

	Modeling User-Defined Functions
	Extending Metamodels
	What is a Metamodel Extension?
	Creating an Extension Model
	Adding a Class Extension to the Extension Model
	Adding Attributes to the Class Extension
	Creating an Extension Enumeration

	Applying an Extension Model to a Metadata Model
	Metamodel Extensions in the Server

	�JDBC Imports and Built-in Datatypes
	The Significance of Datatypes in an Imported JDBC Database

	Model Property Values
	File/Model Properties

	Modeling Generic Relationships
	Creating Generic Relationships

