

MetaBase Modeler User’s Guide
MetaMatrix Products, Release 4.2 SP2 (Second Service Pack for Release 4.2)
Document Edition 1, June 10, 2005

© 2001-2005 MetaMatrix, Inc. All rights reserved.

You can obtain additional copies of this document by contacting MetaMatrix, Inc.

The processes and routines contained in this document are proprietary properties and trade secrets of MetaMatrix, Inc. Except as
provided by license agreement, this document cannot be duplicated, used, or disclosed for any purpose or reason, in whole or in part,
without the expressed written consent of MetaMatrix, Inc. The information within this document is subject to change without notice
and should not be construed as a commitment by MetaMatrix, Inc.

MetaMatrix Server, MetaBase, MetaBase Modeler, MetaMatrix Console, MetaMatrix QueryBuilder, and MetaMatrix Connector
Development Kit are all trademarks of MetaMatrix, Inc. All other company and product names are trademarks of their respective
owners.

If you have any questions, comments, or suggestions regarding this document, contact documentation@metamatrix.com.

 ii

Table of Contents
CHAPTER 1: MODELING DATA .. 1

THE BUSINESS CHALLENGE..1
THE METAMATRIX SOLUTION...1

The MetaMatrix System..2
CHAPTER 2: WHAT IS METADATA? ...5

EDITING METADATA VS. EDITING DATA...6
METADATA MODELS ..6
BUSINESS AND TECHNICAL METADATA...6

Technical Metadata..7
Business Metadata ...7

PHYSICAL AND VIRTUAL METADATA ...8
What Is An Enterprise Information System?...8
Modeling Your Enterprise Information Systems..8
Modeling Your Enterprise Data Needs..9

MODELING METADATA TRANSFORMATIONS ...10
Metadata Transformations...10
SQL in Transformations ...11
Mapping XML Transformations...11

DESIGN-TIME AND RUNTIME METADATA ..12
Design-Time Metadata ..12
Runtime Metadata...12

CHAPTER 3: METAMODELS IN THE METABASE MODELER.................................... 13
WHAT IS A METAMODEL?..13
METAMODELS IN THE METABASE MODELER...14
METAMODEL EXTENSIBILITY...14
AVAILABLE METAMODEL TYPES ...15

The Relational Metamodel ...16
The Data Access Metamodel..17
The XML Metamodels ...17
Choosing a Metamodel ...18

CHAPTER 4: GETTING STARTED WITH THE METABASE MODELER 19
WHAT IS THE METABASE MODELER?...19
USING THE METABASE MODELER WORKSPACE..20

Modeling Metadata Locally ...20
Opening the MetaBase Modeler Workspace Window ...20
Viewing the MetaBase Modeler Workspace Window ...21
Workspaces and Projects ..24

MODELING YOUR METADATA...25
CHAPTER 5: CREATING METADATA MODELS... 27

CREATE A PROJECT...27
CREATING A NEW PHYSICAL MODEL...28
CREATING A NEW VIRTUAL MODEL...30
CREATING A NEW VIRTUAL MODEL FROM AN EXISTING MODEL ..32
COPYING AN EXISTING WORKSPACE MODEL..34
CLOSING A PROJECT...35

iiii

CHAPTER 6: IMPORTING METADATA.. 37
THE METADATA IMPORT WIZARD ..37

Purpose of the Wizard ...37
Import Plug-in Extensibility ..37

IMPORTING AN XML SCHEMA DOCUMENT..38
IMPORTING FROM A METAMATRIX MODEL FILE ..40
QUICK IMPORT AND COPY OF EXISTING METAMODELS AND XML SCHEMA DOCUMENTS........42

Copy and Paste Method ...42
IMPORTING FROM A JDBC DATABASE ...44

Using the Metadata Import Wizard ..44
IMPORTER FOR ERWIN 3.5.2 MODELS..55
IMPORTER FOR RATIONAL ROSE MODELS ..58

Adding Relationships to UML Models..63
CONNECTION INFORMATION IN METADATA MODELS ..68

Connection-Related Meta Objects ...68
Refreshing Metadata ..68

CHAPTER 7: NAVIGATING METADATA.. 69
NAVIGATING THE MODEL/EXPLORER TREE...69

Buttons in the Model Explorer View...69
Icons in the Model Explorer View ...70

CHAPTER 8: CREATING USER-DEFINED DATATYPES... 71
WHAT ARE DATATYPES?..71
BUILT-IN DATATYPES ..72
BUILT-IN DATATYPES WITH RUNTIME TYPES...73
DATATYPE DEFINITIONS ..74

anyURI...74
base64Binary...74
bigdecimal ..74
Biginteger ...75
blob..75
boolean...75
byte ..75
char ...76
clob ..76
date..76
dateTime..76
decimal...77
double ..77
duration ...77
ENTITIES ...78
ENTITY ...78
float ...78
gDay..79
gMonth ..79
gMonthDay ...79
gYear...79
gYearMonth ..80
hexBinary ..80
ID...80

 iiiiii

IDREF ..80
IDREFS ..81
int..81
integer ..81
language ...81
long..82
Name ..82
NCName..82
negativeInteger ..82
NMTOKEN ...83
NMTOKENS...83
nonNegativeInteger...83
nonPositiveInteger...83
normalizedString..84
NOTATION ..84
object..84
positiveInteger...84
QName ...85
short ..85
string..85
time ...85
timestamp ..86
token ...86
unsignedByte ..86
unsignedInt ..86
unsignedLong ...87
unsignedShort...87

USER-DEFINED DATATYPES...88
WHY CREATE USER-DEFINED DATATYPES?...88

Formalizing a Data Dictionary ...88
Describing Data Rules in Detail..88
Reusing Datatypes ...89

CREATING USER-DEFINED DATATYPES..89
Deriving from Built-In Datatypes...89
Deriving from Other User-Defined Datatypes ..89

MODELING THE USER-DEFINED DATATYPES..90
Creating the Datatype Model ...90

CHAPTER 9: CREATING AND EDITING META OBJECTS ... 92
CREATING META OBJECTS..92
CREATING META OBJECTS ON THE MODEL EXPLORER VIEW ...93
VIEWING META OBJECTS IN THE TABLE EDITOR ...94

Using the Table Editor ..94
Editing Meta Objects in the Table Editor..95
Creating Meta Objects in the Table Editor ..96
Pasting into the Table Editor...98
Table Editor Column Sorting and Hiding ...99

EDITING META OBJECT PROPERTIES .. 101
Materialized Views .. 102
Restore Default Values... 102

iivv

MANIPULATING META OBJECTS... 102
What is the Clipboard?... 103
Cutting Meta Objects.. 103
Copying Meta Objects ... 103
Cloning Meta Objects.. 103
Pasting Meta Objects .. 104
Reordering Meta Objects ... 104

CHAPTER 10: ADDING DESCRIPTIONS TO META OBJECTS105
CHAPTER 11: USING DIAGRAMS IN THE METABASE MODELER............................107

WHAT ARE DIAGRAMS? .. 107
What is a Package Diagram?... 107
What is a Transformation Diagram?.. 107
What is a Dependency Diagram?.. 108
What is a Mapping Diagram?.. 108
What is an XML Transformation Diagram?... 108
What is a Custom Diagram?.. 109

VIEWING A DIAGRAM ... 109
Opening a Diagram .. 109
Diagramming Tasks... 110

COMPONENTS OF THE DIAGRAM ... 110
Models .. 110
Categories, Schema, and Catalogs.. 110
Groups, Base Tables, and Views .. 111
Virtual Groups, Base Tables, and Views... 111
Mapping Classes... 111
Staging Tables for XML Documents .. 112
Procedures ... 112
Input Sets ... 113
Elements and Columns ... 113
Primary Keys .. 113
Foreign Keys ... 113
Unique Constraints... 114
Access Patterns ... 114
Links ... 114
Transformation ... 116
XML Fragment Link.. 116
XML Mapping Link .. 116

NAVIGATING THE DIAGRAM... 117
The Outline View and Diagram Thumbnail .. 117

CHAPTER 12: MODELING DATA IN A DIAGRAM ...119
CREATING META OBJECTS IN THE DIAGRAM.. 119

Creating a New Package in the Editor Panel View .. 119
Creating a New Class in the Editor Panel View .. 120
Creating a New Attribute in the Editor Panel View .. 122

CREATING RELATIONSHIPS.. 124
CREATING CUSTOM DIAGRAMS .. 125

Creating and Populating a Blank Custom Diagram.. 125
Creating a New Custom Diagram from a Model or Table... 127

 vv

CHAPTER 13: MODELING TRANSFORMATIONS...129
WHAT IS VIRTUAL METADATA? .. 129
METADATA ABSTRACTION IN THE MODELER ... 130
VIRTUAL ATTRIBUTES ... 131

Basic Virtual Attributes... 131
Transforming Attributes ... 132

VIRTUAL CLASSES... 132
Creating Views with Virtual Classes.. 133
Creating Unions with Virtual Classes .. 134

VIRTUAL METADATA AND DATA ACCESS... 135
Integration with the MetaMatrix Server .. 135
Integration with the MetaMatrix XA Server .. 135

CREATING A TRANSFORMATION... 136
Creating a Simple Transformation .. 136
Creating a Union Transformation... 137

USING THE TRANSFORMATION EDITOR ... 139
Enabling or Disabling Transformation Types.. 140
Removing Transformation Sources ... 141
Using the Criteria Builder... 141
Using the Expression Builder ... 144
Expanding a Select Clause ... 148
Searching and Replacing in a Transformation.. 149
Validating Your Transformation.. 150
Reconciling Target Attributes .. 151
Setting Transformation Editor Preferences ... 153
Using Short SQL Symbol Names .. 153

PROCEDURAL-TO-RELATIONAL MAPPING.. 154
CREATING PROCEDURES FOR UPDATES ... 154

How an Update Procedure Works .. 155
Procedure Language Basic Structure .. 156
Procedure Statements... 156
Special Variables.. 158
Processing SQL Criteria in a User’s Command.. 159
A Sample Procedure ... 160
Use Default Procedure .. 163

VIRTUAL PROCEDURES ... 164
Virtual Procedure Language Basic Structure... 165
Statements Not Used in Virtual Procedures.. 165
Statements Used in Virtual Procedures ... 165
Processing Procedure Inputs ... 168
Sample Virtual Procedures ... 168

ADDING DUPLICATE OBJECTS TO A TRANSFORMATION DIAGRAM ... 169
VIEWING DEPENDENCY DIAGRAMS.. 171

CHAPTER 14: MAPPING OTHER DATA SOURCES TO XML173
WHY MAP NON-XML SOURCES TO XML?... 173
XML SCHEMA AND XML DOCUMENTS .. 173

The Types of XML Files.. 173
XML Files and Metadata Models ... 174

MAPPING SOURCES TO XML DOCUMENTS .. 175

vvii

USING XML SCHEMA FILES AND DOCUMENTS... 176
Importing XML Schema Metadata .. 176
Creating an XML Schema Metadata Model .. 176

CREATING A VIRTUAL XML DOCUMENT MODEL.. 177
Creating New Models from XML Schema ... 177
Creating a Limited Document Model .. 180
Creating a Simple XML Document ... 183
Working With XML Document Models.. 183

IDENTIFYING NAMESPACES... 184
Namespacing for Global Elements .. 185
Namespacing for Local Elements .. 185
Default Namespace... 186
Namespace with Declared Prefix... 186
Qualification with Default Namespaces... 187
All Elements Qualified... 187

WHAT ARE MAPPING DIAGRAMS?.. 188
Reviewing a Mapping Diagram... 188
Reviewing an XML Transformation Diagram.. 189

USING MAPPING CLASSES .. 190
Automatically Generating Mapping Links ... 190
Adding a Mapping Class.. 191
Merging Mapping Classes ... 191
Splitting Mapping Classes... 193
Deleting Mapping Classes ... 193
Adding Attributes to Mapping Classes ... 194
Deleting Attributes from Mapping Classes .. 194

REPEATING TAGS IN XML WITHOUT MAPPING CLASSES .. 195
CREATING TRANSFORMATIONS AND MAPPINGS... 197

Creating XML Transformations .. 197
USING THE INPUT SET .. 198

Role of the Input Set ... 198
Using the Input Set Editor ... 199

USING THE RECURSION EDITOR .. 200
Handling Recursive XML Schema ... 200
Using the Recursion Editor ... 201

USING THE CHOICE EDITOR ... 202
Opening the Choice Editor .. 202
Excluding Options.. 203
Editing the Choice Criteria ... 204
Setting Choice Element Order ... 204
Setting a Default Choice Action.. 205

USING A STAGING TABLE... 205
Improving Data Access with Staging Tables.. 205
Using Staging Tables .. 205
Creating a Staging Table .. 206
Populating a Staging Table ... 207
Using Input Sets with Staging Tables.. 207
Using Staging Tables in XML Transformations... 208
Removing a Staging Table... 208
Deleting a Staging Table... 208

 vviiii

CHAPTER 15: CREATING A VIRTUAL DATABASE... 209
CREATING A VIRTUAL DATABASE DEFINITION.. 209

Synchronizing.. 213
CHAPTER 16: MODELING FOR INFORMATION INTEGRATION.............................215

SPECIAL CONSIDERATIONS FOR INFORMATION INTEGRATION .. 215
ESTABLISHING ACCESS PATTERNS ... 215

What is an Access Pattern? .. 215
Inserting an Access Pattern Meta Object ... 216

CREATING PROCEDURES .. 217
A Sample Procedure ... 218
Modeling a Procedure .. 219

CHAPTER 17: USING THE METADATA TOOLS ..221
VIEWING DATATYPES ... 221

Viewing the Data Dictionary.. 221
ERROR ANALYSIS AND REBUILDING THE PROJECT.. 222

Setting Validation Preferences ... 223
Manual Error Analysis.. 224

COMPARING A MODEL TO ITS LAST SAVE .. 225
MODELER COMMAND LINE APPLICATION... 226

Comparing Models.. 226
Refreshing Imported Models .. 227

CHAPTER 18: MANAGING THE WORKSPACE.. 229
EXPORTING DDL MODELS ... 229

Exporting a DDL File .. 229
EDITING USER PREFERENCES... 231

Editing General Preferences... 231
Editing Debug Preferences... 232
Editing Diagram Preferences ... 233
Editing Editors Preferences ... 234
Editing Validation Preferences.. 235
Preferences Tabs from Plug-ins .. 235

CHAPTER 19: METABASE REPOSITORY AND THE TEAM REPOSITORY.............. 237
SHARING PROJECTS AND FILES ... 237

The MetaBase Repository View .. 237
Sharing a Project or Model.. 239
Unsharing a Project .. 240
Adding a Project or Model to a Shared Team Repository .. 241
Get the Latest Version ... 243
Checking Models and Projects Out and Back In to the Team Repository... 244
Showing Iteration Histories ... 246
Repository Properties ... 247

APPENDIX A: MODELING USER-DEFINED FUNCTIONS .. 249

vviiiiii

APPENDIX B: EXTENDING METAMODELS ...251
WHAT IS A METAMODEL EXTENSION?.. 251
CREATING AN EXTENSION MODEL ... 251

Adding a Class Extension to the Extension Model .. 252
Adding Attributes to the Class Extension .. 255
Creating an Extension Enumeration .. 256

APPLYING AN EXTENSION MODEL TO A METADATA MODEL... 258
METAMODEL EXTENSIONS IN THE SERVER... 259

APPENDIX C: JDBC IMPORTS AND BUILT-IN DATATYPES......................................261
THE SIGNIFICANCE OF DATATYPES IN AN IMPORTED JDBC DATABASE...................................... 261

APPENDIX D: MODEL PROPERTY VALUES... 265
FILE/MODEL PROPERTIES... 265
RELATIONAL MODEL PROPERTIES... 265
RELATIONSHIP MODEL PROPERTIES ... 267
XML DOCUMENT MODEL PROPERTIES.. 268
XML SCHEMA MODEL PROPERTIES .. 268
PERSON MODEL PROPERTIES.. 270

APPENDIX E: MODELING GENERIC RELATIONSHIPS ..271
INTRODUCTION TO GENERIC RELATIONSHIPS ... 271
LOGICAL AND PHYSICAL METADATA FROM ERWIN .. 271
RELATIONSHIP NAVIGATOR VIEW... 272
CREATING GENERIC RELATIONSHIPS ... 273

 11

CChhaapptteerr 11::
MMooddeelliinngg DDaattaa

THE BUSINESS CHALLENGE
Many organizations have come to depend on numerous sources of information for their daily operation.
Different departments and divisions within a company might have developed their own information
technology solutions. Two companies with different IT philosophies may have merged. There are many
reasons why a business may find itself struggling to tie together disparate information sources, such as
Relational databases, inventory management systems, and/or legacy systems. As businesses become
interconnected through the Internet, networking technologies, and partnerships, there are more sources of
information available to an enterprise.

Your organization faces the challenge of using all of its information sources to their full potential.
Attempting to catalog exactly what information lies within a jumble of enterprise information systems can
clutter many white boards and notebooks.

In many cases, it makes perfect sense for different areas of your enterprise to use different applications to
access multiple individual enterprise information systems. But as the number of enterprise information
systems in your business increases, the number of the applications you use to get information can increase
as well. This web of applications can decrease your day-to-day business operation efficiency as you navigate
multiple information sources.

The challenge that faces your organization is organizing the complex and often interrelated sources of
information needed to compete and remain efficient.

THE METAMATRIX SOLUTION
The MetaMatrix System (comprised of the MetaMatrix Server and the MetaBase metadata management
system) offers your organization a way to manage and describe the information across your disparate
enterprise information systems. You can even integrate these enterprise information systems into a single,
complete data access solution using the MetaMatrix Server.

Modeling Data
The MetaMatrix Solution

22 MetaBase Modeler User’s Guide, Release 4.2 SP2

The MetaMatrix System
The entire MetaMatrix System is comprised of several interconnected products and services:

The MetaMatrix System, when used in its totality, enables your end user applications to process queries
that select (and even update) data from one or more of your enterprise information sources, regardless of
the native physical data storage method used by each enterprise information system. This means that a single
query can access, reference, and return results from multiple integrated data sources.

Within the MetaMatrix System, the MetaBase products (including the MetaBase Modeler, the MetaBase
Server, and the MetaBase Repository), enable you to create and manage metadata models: representations
describing the nature and content of your enterprise information systems.

Once captured, this valuable metadata can be searched, analyzed, and applied by applications throughout
your enterprise.

Modeling User-Defined Functions

The MetaMatrix Solution

 33

These metamodels can be deployed to the MetaMatrix Server. The server can use the metadata at runtime
to:

• Process queries posed by the user application of your choice

• Retrieve from the information source(s) of your choice

• Return the integrated results in the information format of your choice

The MetaMatrix Server parses queries based upon the metadata information and distributes the subqueries
to the appropriate enterprise information system(s) through Connectors. These connectors are Java classes
that translate queries into the enterprise information system’s native application programming interface
(API). Once the various enterprise information systems return the data results, the MetaMatrix Server
reassembles and returns those results to the client application of your choice.

Modeling Data
The MetaMatrix Solution

44 MetaBase Modeler User’s Guide, Release 4.2 SP2

 55

CChhaapptteerr 22::
WWhhaatt iiss MMeettaaddaattaa??

Metadata is data about data. A piece of metadata, called a meta object in the MetaMatrix MetaBase Modeler,
contains information about a specific information structure, irrespective of whatever individual data fields
that may comprise that structure.

Let’s use the example of a very basic database, an address book. Within your address book you certainly
have a field or column for the ZIP code (or postal code number). Assuming that the address book services
addresses within the United States, you can surmise the following about the column or field for the ZIP
code:

• Named ZIPCode

• Numeric

• A string

• Nine characters long

• Located in the StreetAddress table.

• Comprised of two parts: The first five digits represent the five ZIP code numbers, the final
four represent the ZIP Plus Four digits if available, or 0000 if not.

• Formatted only in integer numeric characters. Errors will result if formatted as 631410.00 or
6314q0000.

This definition represents metadata about the ZIP code data in the address book database. It abstracts
information from the database itself and becomes useful to describe the content of your enterprise
information systems and to determine how a column in one enterprise information source relates to
another, and how those two columns could be used together for a new purpose.

You can think of this metadata in several contexts:

• What information does the metadata contain? For more information, see “Business and
Technical Metadata.”

• What data does the metadata represent? For more information, see “Physical and Virtual
Metadata.”

• How will my organization use and manage this metadata? For more information, see “Design-
Time and Runtime Metadata.”

What is Metadata?
Editing Metadata Vs. Editing Data

66 MetaBase Modeler User’s Guide, Release 4.2 SP2

EDITING METADATA VS. EDITING DATA
The MetaBase Modeler helps you to create a graphic representation of your data. This abstracted, graphic
representation defines and describes the structure and layout of your data in the original data sources. It also
describes whether those data sources are composed of Relational databases, text files, data streams, legacy
database systems, or some other information type.

The MetaBase Modeler creates, edits, and links these graphically-represented meta objects that are really a
description of your data, and not the data itself. So when this documentation describes the process of creating,
deleting, or editing these meta objects, remember that you are not, in fact, modifying the underlying data.

METADATA MODELS
A metadata model represents a collection of metadata information that describes a complete structure of
data.

In a previous example we described the field ZIPCode as a metadata object in an address book database..
This meta object represents a single distinct bit of metadata information. We alluded to its parent table,
StreetAddress. These meta objects, and others that would describe the other tables and columns within the
database, would all combine to form a physical metadata model for whichever enterprise information
system hosts all the objects.

You can have physical models within your collection of metadata models. These model physical data
storage locations. You can also have virtual models, which model the business view of the data. Each
contains one type of metadata or another. For more information about difference between physical and
virtual metadata, see “Physical and Virtual Metadata.”

NOTE: For more information about using models as you model your metadata, see “Modeling Your
Metadata.”

BUSINESS AND TECHNICAL METADATA
Metadata can include different types of information about a piece of data.

• Technical metadata describes the information required to access the data, such as where the
data resides or the structure of the data in its native environment.

• Business metadata details other information about the data, such as keywords related to the
meta object or notes about the meta object.

Note that the terms “technical” and “business” metadata refer to the content of the metadata, namely what
type of information is contained in the metadata. Don’t confuse these with the terms “physical” and “virtual”
metadata that indicate what the metadata represents. For more information, see “Physical and Virtual
Metadata.”

Modeling User-Defined Functions

Business and Technical Metadata

 77

Technical Metadata
Technical metadata represents information that describes how to access the data in its original native data
storage. Technical metadata includes things such as datatype, the name of the data in the enterprise
information system, and other information that describes the way the native enterprise information system
identifies the meta object.

Using our example of an address book database, the following represent the technical metadata we know
about the ZIP code column:

• Named ZIPCode.

• Nine characters long.

• A string.

• Located in the StreetAddress table.

• Uses SQL Query Language

These bits of information describe the data and information required to access and process the data in the
enterprise information system.

Business Metadata
Business metadata represents additional information about a piece of data, not necessarily related to its
physical storage in the enterprise information system or data access requirements. Business metadata can
represent descriptions, business rules, and other additional information about a piece of data.

Continuing with our example of the ZIP Code column in the address book database, the following
represents business metadata we may know about the ZIP code:

• The first five characters represent the five ZIP code numbers, the final four represent the ZIP
Plus Four digits if available, or 0000 if not.

• The application used to populate this field in the database strictly enforces the integrity of the
data format.

Although the first might seem technical, it does not directly relate to the physical storage of the data. It
represents a business rule applied to the contents of the column, not the contents themselves.

The second, of course, represents some business information about the way the column was populated.
This information, although useful to associate with our definition of the column, does not reflect the
physical storage of the data.

What is Metadata?
Physical and Virtual Metadata

88 MetaBase Modeler User’s Guide, Release 4.2 SP2

PHYSICAL AND VIRTUAL METADATA
In addition to the distinction between business and technical metadata, you should know the difference
between physical metadata and virtual metadata. Physical and virtual metadata refer to what the metadata
represents, not its content.

Physical metadata directly represents metadata for an enterprise information system and captures exactly
where and how the data is maintained. Physical metadata sounds similar to technical metadata, but physical
metadata can contain both technical and business metadata. When you model physical metadata, you are
modeling the data that your enterprise information systems contain. For more information, see “Modeling
Your Enterprise Information Systems.”

Virtual metadata, on the other hand, can create one or more tailored views that transform the physical
metadata into the terminology and domain of different applications. Virtual metadata, too, can contain both
technical and business metadata. When you model virtual metadata, you’re modeling the data as your
applications (and your enterprise) ultimately use it. For more information, see “Modeling Your Enterprise
Data Needs.”

What Is An Enterprise Information System?
The term enterprise information system (EIS) represents a physical source of data that your enterprise uses
in its business activity. Your enterprise probably derives information from numerous sources, including
Relational database management systems (RDBMS), streaming Internet data feeds, text files, legacy systems,
and others.

Modeling Your Enterprise Information Systems
When you model the physical metadata within your enterprise information systems, you capture some
detailed information, including:

• Identification of datatypes

• Storage formats

• Constraints

• Source-specific locations and names

The physical metadata captures this detailed technical metadata to provide a map of the data, the location of
the data, and how you access it.

This collection of physical metadata comprises a direct mapping of the information sources within your
enterprise. If you use the MetaMatrix Server for information integration, this technical metadata plays an
integral part in query resolution.

For example, our ZIPCode column and its parent table StreetAddress map directly to fields within our
hypothetical address book database.

Modeling User-Defined Functions

Physical and Virtual Metadata

 99

To extend our example, we might have a second source of information, a comma-separated text file
provided by a marketing research vendor. This text file can supply additional demographic information
based upon address or ZIP code. This text file would represent another EIS, and the meta objects in its
physical model would describe each comma-separated value.

Modeling Your Enterprise Data Needs
When you create virtual metadata, you are not describing the nature of your physical data storage. Instead,
you describe the way your enterprise uses the information in its day-to-day operations.

Virtual metadata derives its classes and attributes from other metadata. You can derive virtual metadata
from physical metadata that describes the ultimate sources for the metadata or even from other virtual
metadata. However, when you model virtual metadata, you create special “views” on your existing
enterprise information systems that you can tailor to your business use or application expectations. This
virtual metadata offers many benefits:

• You can expose only the information relevant to an application. The application uses this
virtual metadata to resolve its queries to the ultimate physical data storage.

• You can add content to existing applications that require different views of the data by adding
the virtual metadata to the existing virtual metadata that application uses. You save time and
effort since you do not have to create new models nor modify your existing applications.

• Your applications do not need to refer to specific physical enterprise information systems,
offering flexibility and interchangeability. As you change sources for information, you do not
have to change your end applications.

• The virtual metadata models document, in a central place, the various ways your enterprise uses
the information and the different terminology that refers to that information.

Our example enterprise information sources, the address book database, and the vendor-supplied comma-
delimited text file, reside in two different native storage formats and therefore have two physical metadata
models. However, they can represent one business need: a pool of addresses for a mass mailing.

By creating a virtual metadata model, we could accurately show that this single virtual table, the
AddressPool, contains information from the two enterprise information systems. The virtual metadata
model not only shows from where it gets the information, but also the SQL operations it performs to select
its information from its source models.

This virtual metadata can not only reflect and describe how your organization uses that information, but, if
your enterprise uses the MetaMatrix Server, your applications can use the virtual metadata to resolve
queries.

To create this virtual metadata, you create a transformation, a special query that enables you to select
information from the physical (or even other virtual) metadata models. For more information, see
“Modeling Transformations.”

What is Metadata?
Modeling Metadata Transformations

1100 MetaBase Modeler User’s Guide, Release 4.2 SP2

MODELING METADATA TRANSFORMATIONS
Metadata Transformations

By modeling virtual metadata, you can illustrate the business view of your enterprise information sources.
Virtual metadata models not only describe that business view, but also illustrate how the meta objects
within the virtual metadata models derive their information from other metadata models.

Let’s return to the example of our address book database and the vendor’s comma-separated list. We want
to generate the virtual metadata model, Address Pool, from these enterprise information systems.

The transformation that joins these metadata models to create the virtual Address Pool metadata model
contains a SQL query, called a union, that determines what information to draw from the source metadata
and what to do with it. For more information about the SQL you can include in your transformations, see
“SQL in Transformations.”

The resulting Address Pool contains not only the address information from our Address Book database, but
also that from our vendor-supplied text file.

Modeling User-Defined Functions

Modeling Metadata Transformations

 1111

SQL in Transformations
Transformations contain SQL queries that SELECT the appropriate attributes from the information
sources.

For example, from the sources the transformation could select relevant address columns, including first
name, last name, street address, city, state, and ZIP code. Although the metadata models could contain
other columns and tables, such as phone number, fax number, e-mail address, and Web URL, the
transformation acts as a filter and populates the Address Pool metadata model with only the data essential
to building our Address Pool.

You can add other SQL logic to the transformation query to transform the data information. For example,
the address book database uses a nine-character string that represents the ZIP Plus Four. The
transformation could perform any SQL-supported logic upon the ZIPCode column to substring this
information into the format we want for the Address Pool virtual metadata model.

Mapping XML Transformations
When you model virtual metadata, you can create a virtual XML document model. This virtual document
lets you select information from within your other data sources, just like a regular virtual metadata model,
but you can also map the results to tags within an XML document.

In this example, the Address Pool virtual metadata model still selects its information from the Address
Book Database and the Vendor Text File, but it also maps the resulting columns into tags in the Address
XML document.

What is Metadata?
Design-Time and Runtime Metadata

1122 MetaBase Modeler User’s Guide, Release 4.2 SP2

DESIGN-TIME AND RUNTIME METADATA
MetaMatrix software distinguishes between design-time metadata and run-time metadata. This distinction
becomes important if you use both MetaMatrix MetaBase and the MetaMatrix Server. Design-time data is
laden with details and representations that help the user understand and efficiently organize metadata. Much
of that detail is unnecessary to the underlying system that runs the Virtual Database that you will create. Any
information that is not absolutely necessary to running the Virtual Database is stripped out of the run-time
metadata to ensure maximum system performance.

Design-Time Metadata
Design-time metadata refers to data within the MetaBase Repository or your local directory that you have
created or have imported. You can model this metadata in the MetaBase Modeler, adding physical and
virtual metadata. If you only use the MetaBase product, you will work exclusively with design-time
metadata.

The MetaBase Modeler handles design-time metadata, but within the MetaBase Repository Manager you
take the preliminary steps to create the runtime metadata. For more information, see “Sharing Models and
Projects in the Team Repository.”

Runtime Metadata
Once you have adequately modeled your enterprise information systems, including the necessary technical
metadata that describes the physical structure of your EISes, you can use the metadata for data access.

To prepare the metadata for use in the MetaMatrix Server, you take a snapshot of a metadata model for the
MetaMatrix Server to use when resolving queries from your client applications. This run-time metadata
represents a static version of design-time metadata you created or imported. As you create this runtime
metadata, the MetaBase Modeler:

• Derives the runtime metadata from a consistent set of metadata models.

• Creates a subset of design-time metadata, focusing on the technical metadata that describes the
access to underlying enterprise information systems.

• Optimizes runtime metadata for data access performance.

You can continue to work with the design-time metadata, but once you have created a runtime metadata
model, it remains static.

 1133

CChhaapptteerr 33::
MMeettaammooddeellss iinn tthhee MMeettaaBBaassee MMooddeelleerr

WHAT IS A METAMODEL?
Metamodels define which properties, constructs, and terminology are available to describe information. The
type of information you can capture in a metadata model comes from the metamodel. For example, our
metadata representation of our ZIPCode column has a length associated with it because the metamodel it
uses contains a construct called a column which has a property called length.

The MetaBase Modeler uses metamodels to capture metadata according to the Object Management
Group’s Meta Object Facility standard.

NOTE: For more information about this standard, see the Meta object Facility (MOF) Specification,
Version 1.3, March 2000, available from the Object Management Group. http://www.omg.org

This aforementioned standard describes metamodels like this:

Each metadata model created with a metamodel can have the following components, or meta objects,
within it:

• Package, which can contain one or more instances of a class or package.

• Class, which can contain one or more attributes and keys.

• Attribute, one or more of which belong to an instance of the class.

• Key, one or more of which belong to an instance of the class.

• Associations, which can exist between classes.

http://www.omg.org/

Metamodels in the MetaBase Modeler
Metamodels in the MetaBase Modeler

1144 MetaBase Modeler User’s Guide, Release 4.2 SP2

The MetaMatrix MetaBase Modeler supports several different metamodels that adhere to this standard. For
more information, see “Metamodels in the MetaBase Modeler.”

Throughout this document, you’ll find the terms package, class, and attribute refer to the different meta
objects allowed in a metamodel.

METAMODELS IN THE METABASE MODELER
In earlier releases, the MetaBase Modeler supported only one metamodel, the Data Access metamodel. This
metamodel provided a single terminology to refer to the meta objects and the categories, groups, and
elements that comprised your metadata model.

However, the MetaBase Modeler now supports different metamodels. These metamodels reflect the way
your different enterprise information systems organize the information within and the different terminology
associated with each.

For example, you can select the Relational metamodel when modeling or importing metadata from a
Relational database management system, but this changes the nomenclature available on the menus and
displays to reflect that specific metamodel’s constructs and terminology.

METAMODEL EXTENSIBILITY
The MetaMatrix MetaBase Modeler provides a great deal of extensibility in data modeling because the
MetaBase Modeler recognizes more than one metamodel. Therefore, you can more accurately maintain the
names and domain structure of your enterprise information systems (EISes) by modeling them in the
terminology native to that type of enterprise information system. You can even create new metamodels that
uniquely capture metadata to describe practically any enterprise information system.

The metamodels in the MetaMatrix MetaBase Modeler are data-driven. This means all rules inherent in the
metamodel that the MetaBase Modeler enforces regarding the packages, classes, and attributes are not hard-
coded in the MetaBase Modeler. All properties available for the packages, classes, and attributes come from
the metamodel as well.

Future versions of the MetaMatrix MetaBase Modeler will include other metamodels, and because of this
extensibility, you can create models using the new metamodels and seamlessly integrate them, including
virtual metadata created through transformations, with your existing models.

Modeling User-Defined Functions

Available Metamodel Types

 1155

AVAILABLE METAMODEL TYPES
The MetaMatrix MetaBase Modeler Release 4.2 currently supports the following metamodels:

• Relational, which contains packages, classes, and attributes commonly used by Relational
databases. For more information, see “The Relational Metamodel.”

• Data Access, which contains package, class, and attribute terminology used by the MetaMatrix
Server in 1.x releases to resolve queries. For more information, see “The Data Access
Metamodel.”

• XML Documents, used to capture the structure of a virtual document.

• Relational, used to capture the structure (system catalog) of relational sources.

• Relationship, a secondary metamodel that provides generalized relationships between any
model objects and provides a mechanism to constrain which model objects can participate in
the relationships of the corresponding type.

• People, a secondary metamodel that provides a simple model of people, typically used in
conjunction with generalized relationships.

• UML2, provides the subset of UML 2.0 defining static and structural modeling capabilities.

• Transformation, used to capture the structure and detailed information about a
transformation from one or more source classifiers.

• Diagram, a secondary metamodel used to capture the information about a diagram.

• History, a secondary metamodel used to represent the history of an item in the repository.

• Dependency, a secondary metamodel used to capture and represent the dependencies a model
has on other models.

• Core, a secondary metamodel core set of metamodel constructs, including those used to
annotate model objects with a description.

• Model Extension, a metamodel that defines extensions to other metamodels.

• Model Compare, a metamodel used to represent and persist model comparisons.

• JDBC, used to represent JDBC driver libraries and JDBC sources.

• Function, used to capture the user-defined functions that are available to the MetaMatrix
Server. Note that the category property is a required property in this metamodel.

• VDB, used in the manifest model of a virtual database file to capture the models that make up
the virtual database and other information about the information contained within the virtual
database file.

• DQP, used in the configuration model for an embedded DQP component.

Metamodels in the MetaBase Modeler
Available Metamodel Types

1166 MetaBase Modeler User’s Guide, Release 4.2 SP2

• Web Services, a model builder for generating a Web Services model from a Web Services
Definition (WSDL) file.

Not every possible setting for every possible metamodel is covered in this manual. Some of the different
metamodel terms include:

Metamodel Package Class Attribute
Data Access Category Group Element
Relational Schema, Catalog Table, View Column, Key
Simple Datatypes Domain Atomic Simple Type

List Simple Type
Union Simple Type

Facet

XML Document Document Element, Attribute None
Web Services Interface Operation Input, Output

In other MetaMatrix documentation, this distinction does not exist; once you create a virtual database
(VDB) for use with the MetaMatrix Server, the VDB uses the Data Access metamodel. Therefore, other
documentation uses the Category/Group/Element type terminology to refer to the Package, Class, and
Attribute.

These metamodels are based upon the Object Management Group’s Meta Object Facility (MOF) and
Common Warehouse Metamodel (CWM) standards.

The Relational Metamodel
The Relational metamodel describes metadata (and so the native data storage) in terms associated with
Relational database management systems (RDBMS). The Relational metamodel reflects the following
organization of information:

As such, this metamodel names the Packages, Classes, and Attributes as follows:

Package Class Attribute
Schema, Catalog Table, View, Result Set, Stored Procedure Column, Key

Modeling User-Defined Functions

Available Metamodel Types

 1177

The Data Access Metamodel
The Data Access metamodel describes metadata (and the native data storage) in terminology used by the
MetaMatrix Server in 1.x releases. The Data Access metamodel reflects the following organization of
information:

As such, this metamodel names the Packages, Classes, and Attributes as follows:

Package Class Attribute
Category Group Element

The XML Metamodels

The metamodels for XML Schema, and XML Documents reflect the structure, including tags and
attributes, within XML files.

The XML Schema metamodel enables you to model the constraints within an XML Schema; the XML
Document metamodel enables you to describe the contents of an actual XML instance document.

Metamodels in the MetaBase Modeler
Available Metamodel Types

1188 MetaBase Modeler User’s Guide, Release 4.2 SP2

Choosing a Metamodel
When you begin to model your enterprise information systems, one of the first decisions you must make is
which metamodel you should use to represent your physical or virtual metadata. You should base this
decision by determining the constructs and the terminology you want in your metadata model.

The Relational metamodel contains terms and constructs specific to Relational databases. The constructs,
which not only include the name of the packages, classes, and attributes but how they relate to one another,
reflect those common to Relational databases. In general, you want to create a physical metadata model of a
Relational database using the Relational metamodel. The Relational metamodel also contains constructs that
others do not, such as stored procedures and result sets.

The Data Access metamodel contains more generic constructs and terms by design. You can apply the
constructs within it not only to Relational databases, but other types of enterprise information systems.
Therefore you can use the Data Access metamodel to model any sort of physical enterprise information
system.

The XML metamodel let you create models that describe the XML documents your organization uses to
exchange information.

When creating virtual metadata models, you can choose a metamodel that suits your purpose for modeling
the virtual metadata.

If you want to use constructs and terminology that emphasizes the relational nature of your data, such as
information from Relational databases, you can use the Relational metamodel.

However, if you want to emphasize the abstraction, which is especially useful in more abstract virtual
models that relate to actual physical data storage only through several transformations, you might choose
the Data Access metamodel.

 1199

CChhaapptteerr 44::
GGeettttiinngg SSttaarrtteedd wwiitthh tthhee MMeettaaBBaassee

MMooddeelleerr

WHAT IS THE METABASE MODELER?
The MetaBase Modeler is an interface that enables you to capture, model, and maintain metadata for your
organization’s disparate enterprise information systems (EISes) and business views of those systems. You
can model the form and structure of each EIS and logically name and organize the data independently of
the physical data store. You can also import metadata from a variety of formats, including directly from
some databases. Once you have created the metadata you need, you can store it as a metadata model, a set
of related metadata sharing a common metamodel.

You can model this metadata to organize how your enterprise’s information systems relate to one another.
You can also create diagrams that illustrate the business rules your organization uses with the information
within the enterprise information sources. MetaBase Modeler offers display and print capability for
diagrams.

As you create models to represent the enterprise information systems your organization uses, you can use
the MetaBase Modeler’s MetaBase Repository Manager to store your models and enable other members of
your organization to review or modify them.

Once you have organized your metadata into models, your organization, if you use the MetaMatrix Server,
can then use those metadata models to perform queries using the data sources you have modeled.

The primary functions of the MetaBase Modeler include:

• Creating and editing metadata models. You can do this locally, without connecting to the
MetaBase Server. For more information, see “Using the MetaBase Modeler Workspace.”

• Sharing and storing metadata models. You connect to a MetaBase Server to store and version
models in the MetaBase Repository. For more information, see “Sharing Models and Projects
in the Team Repository.”

• You can also use the MetaBase Modeler to define runtime metadata that the MetaMatrix Server
uses to resolve queries. Every time a model is checked into the Team Share Repository, it is
automatically added to the Design Time Catalog (DTC). The DTC can be searched using any
standard reporting tool. For more information, see “Sharing Models and Projects in the Team
Share Repository.”

Getting Started with the MetaBase Modeler
Using the MetaBase Modeler Workspace

2200 MetaBase Modeler User’s Guide, Release 4.2 SP2

USING THE METABASE MODELER WORKSPACE
Modeling Metadata Locally

As you create your metadata models and populate those models with meta objects, diagrams, and
transformations, you save your progress in your local directory. The MetaBase Modeler stores models using
the Object Management Group (OMG) XML Metadata Interchange (XMI) standard.

The MetaBase Modeler handles this, the first of its primary functions, in the MetaBase Modeler window
(also called the workspace). For more information about the MetaBase Modeler window, including its panel
layout, see “Viewing the MetaBase Modeler Workspace Window.”

Within this window, you can:

• Create metadata models and meta objects

• Import metadata from external sources, such as JDBC-compliant databases or XMI files

• Edit or view meta objects or diagrams

• Create transformations for virtual metadata

Note that you do not need a user name and password for the MetaMatrix System to model metadata within
the MetaBase Modeler. You will, however, require a user name and password to connect to a MetaBase
Server and its MetaBase Repository.

Opening the MetaBase Modeler Workspace Window
You can access the MetaBase Modeler Workspace in two ways.

If you’re running the application, you can use the command line or Windows Start menu.

Running the Application
You can run the MetaBase Modeler by executing the script or batch file that runs the MetaBase Modeler.
The name of this file depends upon the operating system of the workstation upon which you run the
MetaBase Modeler.

In the Windows operating system, you select Programs > MetaMatrix Modeler 4.2 > Modeler.

Modeling User-Defined Functions

Using the MetaBase Modeler Workspace

 2211

Viewing the MetaBase Modeler Workspace Window
The MetaBase Modeler Workspace window looks like this the first time you open it:

The window contains the following parts:

• The Menu bar, which contains a set of commonly used commands.

• The Main Toolbar, which provides one-click access to many common commands.

Getting Started with the MetaBase Modeler
Using the MetaBase Modeler Workspace

2222 MetaBase Modeler User’s Guide, Release 4.2 SP2

• The Model Explorer and Outline views, located in the upper left, provide a hierarchical view
of your metadata. The Model Explorer view shows the contents of the entire project. Clicking
the Outline tab toggles to show only the hierarchy of contents in the current Editor Panel
view at any given time.

The Model Explorer view has some useful buttons to help you manage the contents of
the view.

 The Collapse All button closes all open nodes and reduces the view to its most basic
profile.

 The Synchronize With Editor button automatically changes the selection in Model
Explorer view whenever an object is selected in the Editor Panel.

• The Properties and Description views offers detail about the meta object you have selected.

The Properties view has a useful button to help you manage the contents of the view.

The Show Categories button, when toggled on, groups properties into categories.

Modeling User-Defined Functions

Using the MetaBase Modeler Workspace

 2233

• The Problems and Message Log views, located at the bottom right of the Metamodel
window, displays errors, warnings, and informational messages about your models. The
Problems view is updated each time your model projects are built, and contains any violations
of metamodel constraints (such as a Relational Table that contains no columns). The Message
Log contains errors that occur while running the models. Occasionally an error may occur,
such as attempting to paste model objects into an illegal container. These errors may result in
messages logged to the Message Log view. You can examine the messages for more detailed
information.

• The Editor Panel view, located on the right, contains a tab at the top for every model file that
is open to be viewed or edited.

Getting Started with the MetaBase Modeler
Using the MetaBase Modeler Workspace

2244 MetaBase Modeler User’s Guide, Release 4.2 SP2

• The Transformation Editor panel appears after double-clicking on the Transformation icon.
It defines the structure of the target of your transformation.

The various view panels do not represent different data. They represent the same metamodel in different
ways. You can customize the size of the panels within the MetaBase Modeler to reflect your particular work
habits and preferences.

Workspaces and Projects
As you model metadata within the MetaBase Modeler, you work in the MetaBase Modeler window. The
window represents a workspace, a distinct environment in which you can open, create, and modify
individual models. The Model Explorer/Outline panel expands to show the contents of your workspace
at any given time.

Before you can populate and manipulate the metadata in a workspace you must create a project. A project
represents a named workspace you can open at a later time or add to the MetaBase Repository.

The MetaBase Modeler lets you open more than one workspace (or project) at a time. Each workspace or
project displays in a separate MetaBase Modeler window. Note that although you can open multiple
workspaces, you can only open one MetaBase Repository Manager window.

Modeling User-Defined Functions

Modeling Your Metadata

 2255

MODELING YOUR METADATA
The MetaBase Modeler offers flexibility in modeling your enterprise’s information. However, when you first
sit down to model metadata, we suggest that you follow these basic steps:

1. Create a project. Start by creating a project to encompass all of the metamodels that you will
import or create.

2. Connect your existing EIS systems to the MetaMatrix Modeler. Create a physical
metadata model to describe the information stored in your native enterprise information
system (EIS). The physical metadata model contains technical metadata that describes the
ultimate sources for any virtual metadata you model. For more information, see “Creating a
New Physical Model.”

If your MetaBase Modeler includes a plug-in for the EIS, you can import the metadata
information directly from the data source. For more information, see “Importing Metadata.”

3. Import the information source(s) into the MetaMatrix Modeler. Create virtual metadata
models that describe the way your enterprise ultimately uses the data located in your EISes. If
your organization uses the MetaMatrix Server for information integration, your applications
can query underlying data in your EISes through the virtual metadata; if you’re only using
MetaBase for metadata management, these virtual metadata models provide useful business
metadata representation. For more information, see “Creating a New Virtual Model.”

4. Create the transformation between your existing information source(s) and the new
information source you are creating. Within the virtual metadata models, you can create
transformations, which demonstrate how you derive the virtual metadata from the information
within your physical EISes. For more information, see “Creating Transformations.”

5. Map the XML tags, if desired. If you want to describe your information in the terms of an
XML document, based on an XML Schema file, you can create a virtual XML document and
use transformations and mapping links to map information to the XML. For more
information, see “Mapping Other Data Sources to XML.”

6. Validate and test the model. If you’re deploying the metadata model in the MetaMatrix
Server, you should validate it to ensure the model contains all necessary metadata. For more
information, see “Error Analysis and Rebuilding the Project.”

The validity analysis checks to ensure all required meta object properties have values in order
that the model’s transformations ultimately link to physical data sources.

• Optional: Add your new models and projects to the MetaBase Repository. You can
run your virtual database locally from your own PC, or you can share it by adding it to a
MetaBase Repository. The repository provides persistent storage and version control for
your metadata models, which enables other members of your organization to review and
modify them as well. For more information, see “Sharing Models and Projects in the Team
Repository.”

The remainder of this guide describes the modeling processes, within the MetaBase Modeler Workspace
window in greater detail.

Getting Started with the MetaBase Modeler
Modeling Your Metadata

2266 MetaBase Modeler User’s Guide, Release 4.2 SP2

 2277

CChhaapptteerr 55::
CCrreeaattiinngg MMeettaaddaattaa MMooddeellss

When you model your enterprise information systems, you need to capture the essence of how the data
resides in your physical data storage. This modeling relies heavily on technical metadata that describes the
structures, including the packages, classes, and attributes each data store contains. To contain this structure,
you create a physical model. For more information, see “Creating a New Physical Model.”

Once you have one or more physical models that describe your underlying data, or even before you have
fully modeled your physical data, you can create virtual models to contain the business view, or application
view, of the data. These virtual models can contain not only the package, class, and attributes, but also
transformations, which determine how your virtual meta objects come from those in a physical model or
another virtual model. To contain these meta objects and their transformations, you create a virtual model.
For more information, see “Creating a New Virtual Model.”

You can also copy an existing model into a new virtual model. For more information, see “Copying an
Existing Model.”

You can also create new physical metadata models by importing information from a variety of physical data
sources. For more information, see the chapter “Importing Metadata.”

CREATE A PROJECT
The first step in creating a metamodel is to open a project folder for the model that you will create.

1. To initialize a project, from the menubar select File >New > Model Project…

2. The New Project dialog box appears.

3. Enter a project name and click the Finish button.

Creating Metadata Models
Creating a New Physical Model

2288 MetaBase Modeler User’s Guide, Release 4.2 SP2

4. The project appears in the Model Explorer/Outline view.

CREATING A NEW PHYSICAL MODEL
You can create a new physical metadata model to describe the physical structure of your enterprise
information systems. Physical models, by definition, should match exactly the structure of your native data
storage.

The physical metamodel that you create using the Metamatrix Modeler is representative. The MetaMatrix
Console manages the actual physical connections to your enterprise information sources.

To create a new physical model:

1. From the menubar, select File > New > Metadata Model…. The New Model Wizard
dialog box displays.

Input or browse to the location of the data source, and select the file name.

Modeling User-Defined Functions

Creating a New Physical Model

 2299

2. From the Metamodel drop-down list, select the metamodel that reflects this enterprise
information system.

3. Select Physical Model from the Model Type dropdown. Click Finish.

4. The new model displays on your Model Explorer/Outline view bearing a placeholder name
such as newModel1 or CSdata.xmi. The file also opens in the Editor Panel.

NOTE: You can only save your models to your local directory.

The MetaBase Modeler creates and saves your new model in the local directory. You can begin modeling in
it by creating meta objects. For more information, see the chapter “Creating and Editing Meta Objects.”

By creating this model as a physical model, you designate this model as reflecting the physical metadata of
your enterprise information system. The contents of the model describe the contents of your enterprise
information system.

To create your organization’s business rules and application view of this enterprise information system, you
need to create one or more virtual models that take the information from your physical group and
transform it to reflect the business rules your organization applies to its information. For more information
about creating these virtual metadata models, see “Creating a New Virtual Model.”

Creating Metadata Models
Creating a New Virtual Model

3300 MetaBase Modeler User’s Guide, Release 4.2 SP2

CREATING A NEW VIRTUAL MODEL
You can create a new virtual model to describe the business rules and application view of your data. The
contents of this model result from transformations that you perform on your physical metadata models or
other virtual metadata models.

To create a new virtual model:

1. From the menubar, select File > New > Metadata Models.

2. The New Model Wizard dialog box displays.

Input or browse to the Location of the data source, and select the File Name.

Modeling User-Defined Functions

Creating a New Virtual Model

 3311

From the Metamodel drop-down list, select the metamodel that reflects this enterprise
information system. For a complete list of available metamodels, see Available Metamodel
Types.

3. Select the Model Type drop down for Virtual Model.

4. Click Finish.

5. The new model displays on your Model Explorer/Ouline view bearing a placeholder name
such as newModel1 or CSdata. The file also opens in the Editor Panel view.

NOTE: You save your models to your local directory under the project location.

The MetaBase Modeler creates and saves your new virtual metadata model. You can begin modeling in it by
creating packages, classes, and transformations. For more information, see “Creating and Editing Meta
Objects.”

Although the meta objects within the virtual model do not map directly to structures in your enterprise
information sources, you must ultimately connect the meta objects, especially attributes, to physical
attributes through transformations. If you use the MetaMatrix Server to integrate your data sources, you’ll
check the validity of these transformations with the Validity Analysis tool.

Creating Metadata Models
Creating a New Virtual Model from an Existing Model

3322 MetaBase Modeler User’s Guide, Release 4.2 SP2

CREATING A NEW VIRTUAL MODEL FROM AN EXISTING
MODEL

You can create a new virtual model by copying an existing model if you have a number of meta objects you
want to recycle into your new virtual model. This copy becomes handy if you want to create a more limited
or transformed application view of an existing virtual or physical model.

To copy an existing model into a new virtual model:

1. Open the model you want to copy in the workspace.

2. From the menubar, select File > New > Model…

3. The New Model Wizard dialog box displays.

Input or browse to the location of the data source.

4. From the Metamodel drop-down list, select the metamodel that reflects this enterprise
information system.

5. Click either the Virtual Model or Physical Model from the Model Type drop down.

6. Select Copy from an existing model of the same metamodel.

7. The Copy an Existing Model dialog box displays. From your metamodel projects folder (or
by browsing to a different folder) you can select the model that you wish to copy into your
project.

Modeling User-Defined Functions

Creating a New Virtual Model from an Existing Model

 3333

8. The components of the model display. You can select any individual components of the
existing model that you wish to copy into your metamodel.

The MetaBase Modeler creates and saves your new model in the directory. You can begin modeling in it by
creating packages, classes, and transformations. For more information, see “Creating and Editing Meta
Objects.”

Creating Metadata Models
Copying an Existing Workspace Model

3344 MetaBase Modeler User’s Guide, Release 4.2 SP2

COPYING AN EXISTING WORKSPACE MODEL
You can create a copy of an existing model in the workspace through either of two Modeler actions,
Copy/Paste and Save As.

To execute Copy on an existing model in the workspace:

1. Select the model in the explorer tree.

2. Right-click and select Copy.

3. Select the modeling project or folder under which the new copy will be located

4. Right-click and select Paste. An exact copy of the selected model will be created in the
workspace. All references and unique identifiers (UUIDs) within the copy will be the identical
to the original.

NOTE: Two models with the same unique identifiers are considered ambiguous by the
Modeler and using them risks breaking external references between model objects.
The copied model should be removed from the workspace or placed within a closed
project as soon as possible.

To execute Save As on an existing model in the workspace:

5. Open the model in an editor.

6. While the editor is active, from the menubar, select File > Save As...

Modeling User-Defined Functions

Closing a Project

 3355

7. Enter the name of the new model in the Save Model As dialog and hit OK.

8. If the contents of the model being copied are referenced from other models in the workspace,
a Save Model As - Import References dialog will appear. The dialog allows the user to
specify which, if any, of the of these models should have their references reset to the new copy.

9. Upon completion of the Save As action, a new model will be created in the workspace that is
an exact copy of the model open in the editor. Unlike the Copy action, the model and its
contents will be created with new unique identifiers and immediately useable for subsequent
modeling activities.

CLOSING A PROJECT
Closing a project makes all models and all objects within those models effectively disappear from the
workspace. There is a direct impact on some MetaBase Modeler functionality when closing a project:

• Build/Validation is not performed on models in closed projects. When a project is closed, all
validation errors and warnings disappear from the Problems view. Also, metadata and
relationship Search functions will not find objects in closed projects.

• The Find Model Object function won’t find objects in closed projects.

• Any popup dialog that displays objects, like those in a relationship wizard or the Set Datatype
dialog, will not display any objects in closed projects.

Creating Metadata Models
Closing a Project

3366 MetaBase Modeler User’s Guide, Release 4.2 SP2

• Validation on objects in open projects may generate errors if the objects reference other
objects that are in closed projects. Specifically, virtual models in open projects that use
physical models in closed projects will fail.

 3377

CChhaapptteerr 66::
IImmppoorrttiinngg MMeettaaddaattaa

THE METADATA IMPORT WIZARD
Purpose of the Wizard

The Metadata Import Wizard helps you create a new model in your workspace by importing metadata
information from a physical enterprise information system or other source.

When you import metadata information, the MetaBase Modeler creates a new metadata model for you (in
most cases). Once you have created this metadata model, you can alter it as you would any other; however,
bear in mind that any changes you make to an imported metadata model do not impact the underlying
structure of the enterprise information system the model represents.

You can also use the Metadata Import Wizard, in some cases, to update the information within the models
based on changes to the underlying data source. This capability varies based on the type of data source and
the plug-in that the Metadata Import Wizard uses.

Import Plug-in Extensibility
The MetaBase Modeler provides an extensible import wizard framework that allows you to create import
wizards and plug them into the MetaBase Modeler. For more information about creating your own
metadata importers, see the MetaMatrix MetaBase Plug-in Developer’s Guide.

The MetaBase Modeler comes with several standard plug-ins that you can use to import metadata from
common sources. These standard plug-ins let you import data from:

• A JDBC-compliant database. For more information, see “Importing from a JDBC Database.”

• The File System loads any file from any location.

• Zip files.

Importing Metadata
Importing an XML Schema Document

3388 MetaBase Modeler User’s Guide, Release 4.2 SP2

IMPORTING AN XML SCHEMA DOCUMENT
You can import the contents of an XML schema document file, typically stored within a file bearing the
.xsd extension, into a metadata model that describes that file. An XML schema document, commonly
referred to as an XML schema, acts as a blueprint or list of constraints that describe what elements you can
find in an XML instance document that adheres to that XML schema.

You can import more than one XML schema document into your workspace at a time.

To import one or more XML schema document files:

1. Select File > Import. The Import wizard displays.

2. Import source from File System. Click Next.

Modeling User-Defined Functions

Importing an XML Schema Document

 3399

3. Navigate to the folder containing the XML schema document, select the document, and click
Finish. The new metadata model displays on the Model Explorer/Outline view with the
name of the XML schema file.

4. You can make changes to the XML schema document by double-clicking on the .xsd file in the
Model Explorer view. You can edit the XML schema document in the Editor Panel view.

Importing Metadata
Importing from a MetaMatrix Model File

4400 MetaBase Modeler User’s Guide, Release 4.2 SP2

IMPORTING FROM A METAMATRIX MODEL FILE
If you or someone else has exported a metadata model you can easily import that metadata into your
workspace or current project. You’ll find this useful when you want to import metadata models from other
MetaBase Repositories or from a file sent to you by another party or from MetaMatrix Technical Support.

To import an .xmi model file:

1. Select File > Import. The Import dialog box displays.

2. Import source from File System. Click Next.

Modeling User-Defined Functions

Importing from a MetaMatrix Model File

 4411

3. Navigate to the folder containing the model file, select the file, and click Finish.

4. If you import this model into a different project, you may need to use Rebuild Model
Imports from the Metadata selection of the menu bar.

Importing Metadata
Quick Import and Copy of Existing Metamodels and XML Schema Documents

4422 MetaBase Modeler User’s Guide, Release 4.2 SP2

QUICK IMPORT AND COPY OF EXISTING METAMODELS
AND XML SCHEMA DOCUMENTS

Copy and Paste Method
You can bypass all of the previous instructions for importing or copying an existing metamodel or XML
schema document using a simple copy and paste procedure to get metamodels into an existing project.
Most metamodels are files that can be moved from one directory structure to another.

NOTE: You cannot cut and paste JDBC databases. JDBC databases require connections, connection
drivers, and passwords.

1. Using Internet Explorer, navigate to the model file that you wish to import or copy.

2. Select the model to be imported or copied.

3. Press CTRL+C to copy the model.

4. Open the MetaMatrix Modeler. In the Model/Explorer view, right click on the project.

Modeling User-Defined Functions

Quick Import and Copy of Existing Metamodels and XML Schema Documents

 4433

10.

5. Select Paste to paste the import or copy into your project. (Paste will be disabled if the
Modeler determines that you already have the specified model in your workspace.)

The MetaMatrix Modeler will validate the incoming model and add it to the designated project.

Importing Metadata
Importing from a JDBC Database

4444 MetaBase Modeler User’s Guide, Release 4.2 SP2

IMPORTING FROM A JDBC DATABASE
Using the Metadata Import Wizard

The MetaBase Modeler comes with a number of plug-ins to import metadata from JDBC-compliant
databases. You can import metadata information, including schema, tables, views, columns, and keys,
directly from these databases. The MetaBase Modeler can read database information and build a metadata
model as large or as small as you want.

The MetaBase Modeler comes with the following standard JDBC plug-ins:

• General Database.

• IBM DB2 Database.

• IBM DB2 Database with Java Transaction API (JTA) support.

• Informix Database with Java Transaction API (JTA) support.

• Microsoft SQL Server Database

• Microsoft SQL Server Database with JTA support.

• Oracle Database

• Oracle Database with JTA support.

• Sybase Database with JTA support.

To import metadata from a JDBC database:

1. From the menubar, select File > Import. The Import dialog box displays.

Modeling User-Defined Functions

Importing from a JDBC Database

 4455

2. Import source from Metadata from JDBC Database. Click Next.

3. The Import Database via JDBC dialog box displays. Click the Connections button.

Importing Metadata
Importing from a JDBC Database

4466 MetaBase Modeler User’s Guide, Release 4.2 SP2

4. The Connection Configuration dialog box displays.

5. Enter a name for the database connection that you are initiating. This will be the default name for
the model you will import. It is recommended that you make this connection name descriptive.
Click the Add… button.

Modeling User-Defined Functions

Importing from a JDBC Database

 4477

6. You may get a list of available Drivers: in a dropdown list. If you can select the driver you need
from a pre-loaded list, select the driver and skip to Step 13. Steps 7 through 12 explain how to
initiate a driver for the first time.

7. If you need to initiate a driver from scratch, follow the instructions in steps 7 through 13.
Otherwise skip to step 14. Click the Drivers… button. The JDBC Drivers Configuration dialog
box displays.

8. Click the Add… button. You can now enter the name of the driver configuration in the Name:
field.

Importing Metadata
Importing from a JDBC Database

4488 MetaBase Modeler User’s Guide, Release 4.2 SP2

9. In the URL Syntax: field, enter the syntax format for your database server connection properties.
You will need to load the class path (and related .jar files) for your JDBC drivers. See the
documentation that came with your JDBC for specifics on which files are required.

To load additional plug-ins or files, use the Add…, Add Folder…, Add External…, or Add
External Folder… buttons at the bottom right of the dialog box to browse to the necessary
components specified in the JDBC driver documentation.

10. Click the Update button at the bottom right of the dialog box.

11. Select a class name from the Class Name: dropdown box.

12. Click OK.

Modeling User-Defined Functions

Importing from a JDBC Database

 4499

13. The Connection Configurations dialog box displays again, this time with most of the critical
fields completed.

14. The Properties button opens a list of the properties associated with the type of JDBC driver that
you are using.

Importing Metadata
Importing from a JDBC Database

5500 MetaBase Modeler User’s Guide, Release 4.2 SP2

15. In the URL: field, use the prefilled syntax structure to enter the location of the database you are
importing. Replace any generic fields with specific server locations, port numbers, or system
identifiers.

16. In the User Name: field, input the name of the database connection to be used to import the
database.

17. Click Test Connection. You may be prompted for a password.

18. Once again, you are returned to the Import Database via JDBC dialog box, now with some fields
prefilled.

Enter the database connection Password and click Connect to Database.

19. Once the connection is established, click Next.

Modeling User-Defined Functions

Importing from a JDBC Database

 5511

20. For an Oracle database, this screen might look like this:

You can choose the meta objects you want to import. From the Tables Types list box, select the
types of features in the database you want to import. The types of tables available differ depending
upon the type of database.

21. You can click the following checkboxes:

• Foreign Keys to import foreign keys.

• Indexes to import indexes.

• Unique Only to import only unique indexes.

• Approximations Allowed to allow approximations of index information, such as number of
rows, when importing indexes.

• Procedures to import stored procedures.

Importing Metadata
Importing from a JDBC Database

5522 MetaBase Modeler User’s Guide, Release 4.2 SP2

22. Click Next. The following dialog box appears.

This screen shows metadata in the context of your connection and previous selections. You
can see metadata for other connection accounts, but no data.

23. To see additional metadata for the connection that you are establishing, click on the checked
description in directory tree. You can see additional details such as column headings, indexes,
keys, and descriptions.

Modeling User-Defined Functions

Importing from a JDBC Database

 5533

For more information on the significance of data type, type name, and their relationship to
JDBC type in the established JDBC import, see Appendix C, “JDBC Imports and Built-in
Datatypes.”

24. Click Next. The next JDBC Import dialog box displays.

Where the previous JDBC import dialog boxes dealt with which metadata will be imported, this
panel specifies how metadata will be imported. Following is an overview of the options available
through this dialog box.

• Update - Select update if you want this import to update a model that already exists in your
workspace. If you check the Update box, there will be one additional screen before the
importer wizard completes. You will only see this screen if you have previously imported the
same model

Importing Metadata
Importing from a JDBC Database

5544 MetaBase Modeler User’s Guide, Release 4.2 SP2

From this screen you can see at-a-glance the differences between the existing version of the
model, and the reimported version. You can deselect any attributes that you do not wish to
import.

• Schema - Keep the original format or nested folders of metadata upon import.

• Model Object Names – Select any conversion of case-shifting in importing metadata naming
conventions.

• Source Object Names – Standardizes non-standardized naming, and reconciles “name”
against “name in source.”

25. Click Finish. The new metadata model displays on the Model Explorer/Outline tab with the
database you imported.

Modeling User-Defined Functions

Importer for ERwin 3.5.2 Models

 5555

IMPORTER FOR ERWIN 3.5.2 MODELS
MetaMatrix provides an importer for ERwin files (version 3.5.2). The importer will create Relational models
in the MetaMatrix workspace.

Supported structural features of ERwin models will be:

• Schema

• Catalog

• Table

• View

• Column

• Index

• Procedure

• Parameter

• Foreign key

• Primary key

• Unique key

• Logical relationship

Any properties (name-value pairs) of these features that are unique your use of ERwin (or describe physical
database attributes) will be implemented using the Modeler's metadata extension functionality. The Modeler
will allow the display and editing of the imported metadata in UML notation in package diagrams within the
model.

Importing Metadata
Importer for ERwin 3.5.2 Models

5566 MetaBase Modeler User’s Guide, Release 4.2 SP2

To import and convert an ERwin model, use the following procedure.

1. From the MetaBase Modeler menubar, select File > Import. The Import selection screen
displays.

2. Select ERwin Models as your import source. Click Next. The ERwin Import dialog box
displays.

Modeling User-Defined Functions

Importer for ERwin 3.5.2 Models

 5577

3. Select an ERwin source model. Use the Browse button to navigate, if necessary.

4. Complete the dialog boxes on the ERwin Import Screen. Any user-defined properties and
values will be at the top of the information listed in the User Properties and Import Options
section. A number of core properties and values will always appear.

5. Click Finish.

When you import an ERwin model, all entities from the ERwin model that are Logical Only or Logical
and Physical get created in the Logical (UML) model.

Also, all entities from the ERwin model that are Physical Only or Physical and Logical get created in the
Physical model.

Importing Metadata
Importer for Rational Rose Models

5588 MetaBase Modeler User’s Guide, Release 4.2 SP2

All types used are created in a Datatype schema. All relationships between entities (Primary Keys, Foreign
Keys, Associations, etc) are represented in the Relationship model and may also be represented in another
model.

IMPORTER FOR RATIONAL ROSE MODELS
MetaMatrix provides an importer for files exported from Rational Rose versions 2000 and 2001.

The importer creates UML models in the MetaMatrix workspace. Supported structural features of UML will
be defined by the UMLClasses Metamodel Project. The content of the Rose model file that matches these
supported features of the MetaMatrix UML metamodel are imported.

The importer allows subsequent reimportation of the Rose model file. It incorporate changes into the
MetaMatrix UML model. Any properties of the supported UML constructs that are unique to your use of
Rose are implemented using the Modeler's metadata extension functionality.

To import and convert a Rational Rose model, use the following procedure.

1. From the MetaBase Modeler menubar, select File > Import. The Import selection screen
displays.

http://inside.metamatrix.com/ow.asp?UMLClassesMetamodelProject

Modeling User-Defined Functions

Importer for Rational Rose Models

 5599

2. Select an IBM Rational Rose Model as your import source. Click Next. The Rose
Importer dialog box displays.

Using the ellipse button , navigate to a Rose model unit you wish to import.

Importing Metadata
Importer for Rational Rose Models

6600 MetaBase Modeler User’s Guide, Release 4.2 SP2

3. After you return to the main Rose Importer dialog, check the appropriate models and/or
model children to import. Click Next.

4. The Create New or Select Existing UML dialog appears.

5. Select the target models and folders.

NOTE: If preserving the file system structure of the source Rose Units being imported is
desired, a similar file system structure must exist in the model target location prior
to starting the wizard.

Modeling User-Defined Functions

Importer for Rational Rose Models

 6611

This wizard page consists of two distinct areas separated by an adjustable, split-pane dialog
box:

• The selected source Rose Units table

• The editor

The top area consists of a table identifying the Rose Units being imported.

For each Rose Unit a target folder and target model name is shown, as well as, an error or
warning indicator. The initial value of the target folder will be set to the model project or folder
that was selected prior to starting the wizard (or none if there was no previous selection).
Selection buttons to the right of the table aid in selecting table rows. Values in the selected
table rows are changed via the editor.

The bottom area is an editor.

The editor allows target folders and model names to be changed. The editor modifies all
selected table rows (the top area) with its information once the Apply button is selected. If
more than one row is selected, the information area shows only the common information.

For example, if two rows are selected that have the same target folder, then that target folder
will show in the editor. However, if two rows are selected with different target folders, the
editor will not show any information for the folder.

When changes are made in the editor, the appropriate checkbox is automatically checked.
Unchecking the checkbox will reset the editor back to the original value.

For both the target folder and target model properties, using their respective browse buttons
can set new values. This allows navigation of the workspace. Selecting a recently used value in
the drop-down dialog can also set new values. The editor can be closed and opened either by
using the editor's toolbar button or the top areas toolbar button.

Importing Metadata
Importer for Rational Rose Models

6622 MetaBase Modeler User’s Guide, Release 4.2 SP2

6. Click Next. A brief progress information bar appears.

7. You are presented with a dialog giving you the opportunity to lock elements of the UML
model entity(s).

8. Click Finish.

Modeling User-Defined Functions

Importer for Rational Rose Models

 6633

Adding Relationships to UML Models
To create a secondary relationship model (working in conjunction with a primary UML model), use the
following procedure.

1. From the MetaBase Modeler menu bar, select File > New > Metadata Model. The New
Model Wizard dialog displays.

2. Browse to the location that the model will be placed, give the file a relevant file name, and
choose Relational from the Metamodel: drop down dialog.

Relational models can be either virtual or physical.

Importing Metadata
Importer for Rational Rose Models

6644 MetaBase Modeler User’s Guide, Release 4.2 SP2

3. Highlight Generate from existing UML Models.

4. Click Next. The Generate a Model from an Existing UML Model dialog displays.

5. Select the Source UML entities that will generate the Relational Model.

Modeling User-Defined Functions

Importer for Rational Rose Models

 6655

6. Select the Relationships model in which all of the generated relationships will be placed.

7. The General options tab contains more optional parameters for the relationship model.

Importing Metadata
Importer for Rational Rose Models

6666 MetaBase Modeler User’s Guide, Release 4.2 SP2

8. The Datatypes tab contains more optional parameters for the relationship model.

9. The Generated Keys tab contains more optional parameters for the relationship model.

Modeling User-Defined Functions

Importer for Rational Rose Models

 6677

10. The ellipse button launches a Select Datatype menu.

11. The Add Primary Key Stereotypes button launches an entry dialog box for the Key
Stereotype Name.

Importing Metadata
Connection Information in Metadata Models

6688 MetaBase Modeler User’s Guide, Release 4.2 SP2

CONNECTION INFORMATION IN METADATA MODELS
Connection-Related Meta Objects

The Metadata Import Wizards provided by MetaMatrix store information describing the connection used by
the Metadata Import Wizard. You will find these meta objects in physical model, and they describe the
enterprise information system from which you imported the model. You cannot use this information in
virtual metadata models or transformations based upon the physical metadata model.

Refreshing Metadata
You can use this connection information to refresh the contents of certain meta objects and models to
ensure the metadata remains consistent with structure of the data source it describes.

Refreshing differs from importing metadata into an existing model in that refreshing automatically uses the
information in the connection meta objects instead of presenting the Metadata Import Wizard for you to
choose the options again and refreshing only compares the meta objects in your existing model, whereas
updating a model allows you to broaden the scope to include other meta objects.

You can refresh the following:

• Relational models.

• Data access models.

To refresh the model, select the model you want to refresh on the Model Explorer or Outline view and
select Metadata > Refresh Model from Source.

The MetaBase Modeler will use the connection information in the stored with the model and the Metadata
Import Wizard plug-in named in the Connections meta object to automatically re-import the metadata.
Keep in mind you need the plug-in named in the Connections meta object installed on your workstation to
refresh metadata from the source.

 6699

CChhaapptteerr 77::
NNaavviiggaattiinngg MMeettaaddaattaa

NAVIGATING THE MODEL/EXPLORER TREE
The Model Explorer view contains a hierarchical organization of the metadata within the project.

Once you have opened a model, your Model Explorer view looks something like this:

The toolbar at the top of the Model Explorer view offers a set of buttons to help you navigate the project
files.

Buttons in the Model Explorer View
The toolbar at the top of the Model Explorer view offers you a quick way to navigate the models you have
open in your workspace.

Button Function

 Select the last item you viewed before the current node.

 Select the next item you selected after the current node.

 Select the parent meta object of the currently selected node.

 Collapse all nodes.

Link with Editor. When toggled “on” it synchronizes any actions done in the Editor Panel
view or Description view with an immediate refresh of the Model Explorer view.

Filters. You can specify which kinds of files display or do not display in the Model
Explorer view.

Navigating Metadata
Navigating the Model/Explorer Tree

7700 MetaBase Modeler User’s Guide, Release 4.2 SP2

Icons in the Model Explorer View
The icon beside the node of the tree tells you what sort of meta object the node represents.

Icon Meta Object Examples (if applicable)
 Physical metadata model
 Virtual metadata model
 Package Category (Data Access metamodel)

Schema (Relational metamodel)
Catalog (Relational metamodel)

 Virtual package Any of the above packages in a Virtual metadata model
 Class Group (Data Access metamodel)

Base Table (Relational metamodel)
View (Relational metamodel)

 Class Any of the above classes in a Virtual metadata model
 Attribute Element (Data Access metamodel)

Column (Relational metamodel)
 Unique Constraint
 Primary Key
 Foreign Key
 JDBC Sources
 JDBC Import Settings
 Index
 Diagram Package

Custom
 Transformation Diagram
 Mapping Diagram

 Document XML Schema (XML Schema metamodel)
XML document (XML Document metamodel)

 Comment Documentation (XML Schema metamodel)
Comment (XML Document metamodel)

 Compositor All Compositor (XML Schema metamodel)
Sequence Compositor (XML Schema metamodel)

 Atomic datatype
 Complex datatype
 Attribute
 Element
 Namespace
 Import Import (XML Schema metamodel)

Include (XML Schema metamodel)
 Pattern, Enumeration
 Connection

Click any node in the Model Explorer/Outline view and the properties will display in the Properties and
Description panel. You can modify many properties in the Description view if you can write to the model in your
local directory (you have not checked it into the MetaBase Repository).

 7711

CChhaapptteerr 88::
CCrreeaattiinngg UUsseerr--DDeeffiinneedd DDaattaattyyppeess

WHAT ARE DATATYPES?
Datatypes represent what sort of information a meta object contains. For example, does it contain:

• A number (an integer)

• A number with a decimal point (a float)

• A yes-or-no value, sometimes called a flag (a Boolean)

The datatype represents the type of variable or parameter used to store that information within the data
source.

When you create derived datatypes in the MetaBase Modeler, you’re essentially creating a metadata model
using the special classes and attributes that reflect your new datatypes.

Creating User-Defined Datatypes
Built-In Datatypes

7722 MetaBase Modeler User’s Guide, Release 4.2 SP2

BUILT-IN DATATYPES
The MetaBase Modeler offers a wide variety of common datatypes to accommodate common data source
datatypes. In addition to reusing all of the XML Schema built-in types, MetaMatrix offers seven additional
types. See the diagram that follows for a complete accounting.

Modeling User-Defined Functions

Built-in Datatypes with Runtime Types

 7733

BUILT-IN DATATYPES WITH RUNTIME TYPES
MetaMatrix associates a runtime type with each datatype (including built-in datatypes). This runtime type
defines how the MetaMatrix Server works with the values of that type during query execution.

 The following image shows built-in datatypes and their associated runtime times defining how enterprise
information source data is accessed and manipulated using the MetaMatrix Server.

Creating User-Defined Datatypes
Datatype Definitions

7744 MetaBase Modeler User’s Guide, Release 4.2 SP2

DATATYPE DEFINITIONS
Following are samples and definitions for MetaMatrix built-in datatypes referenced in the two previous
illustrations.

anyURI
Runtime Datatype
java.lang.String

Definition
anyURI represents a Uniform Resource Identifier Reference (URI). An anyURI value can be absolute or
relative, and may have an optional fragment identifier (i.e., it may be a URI Reference). This type should be
used to specify the intention that the value fulfills the role of a URI as defined by [RFC 2396], as amended
by [RFC 2732].

base64Binary

Runtime Datatype
java.lang.String

Definition
base64Binary represents Base64-encoded arbitrary binary data. The value space of base64Binary is the set
of finite-length sequences of binary octets. For base64Binary data the entire binary stream is encoded using
the Base64 Content-Transfer-Encoding defined in Section 6.8 of [RFC 2045].

bigdecimal
Runtime Datatype
java.math.BigDecimal

Definition
bigdecimal represents arbitrary-precision signed decimal numbers. A bigdecimal consists of an arbitrary
precision integer unscaled value and a non-negative 32-bit integer scale, which represents the number of
digits to the right of the decimal point. The number represented by the bigdecimal is
(unscaledValue/10scale).

Modeling User-Defined Functions

Datatype Definitions

 7755

Biginteger
Runtime Datatype
java.math.BigInteger

Definition
biginteger represent arbitrary-precision integers. All operations behave as if bigintegers were represented in
two's-complement notation (like Java's primitive integer types).

blob
Runtime Datatype
com.metamatrix.common.types.BlobType

Definition
blob represents a binary large object.

boolean

Runtime Datatype
java.lang.Boolean

Definition
boolean has the value space required to support the mathematical concept of binary-valued logic: {true,
false}.

byte
Runtime Datatype
java.lang.Byte

Definition
byte is derived from short by setting the value of maxInclusive to be 127 and minInclusive to be -128. The
base type of byte is short.

Creating User-Defined Datatypes
Datatype Definitions

7766 MetaBase Modeler User’s Guide, Release 4.2 SP2

char
Runtime Datatype
java.lang.Character

Definition
char represents a single character data type.

clob
Runtime Datatype
com.metamatrix.common.types.ClobType

Definition
clob represents a character large object.

date
Runtime Datatype
java.sql.Date

Definition
date represents a calendar date. The value space of date is the set of Gregorian calendar dates as defined in
5.2.1 of [ISO 8601]. Specifically, it is a set of one-day long, non-periodic instances e.g. lexical 1999-10-26 to
represent the calendar date 1999-10-26, independent of how many hours this day has.

dateTime
Runtime Datatype
java.lang.String

Definition
dateTime represents a specific instant of time. The value space of dateTime is the space of Combinations
of date and time of day values as defined in 5.4 of [ISO 8601].

Modeling User-Defined Functions

Datatype Definitions

 7777

decimal
Runtime Datatype
java.math.BigDecimal

Definition
decimal represents arbitrary precision decimal numbers. The value space of decimal is the set of the values
i - n, where i and n are integers such that n >= 0.

The order-relation on decimal is:

x < y if y - x is positive. The value space of types derived from decimal with a value for totalDigits of p is
the set of values i - n, where n and i are integers such that p >= n >= 0 and the number of significant
decimal digits in i is less than or equal to p. The value space of types derived from decimal with a value for
fractionDigits of s is the set of values i - n, where i and n are integers such that 0 <= n <= s.

double
Runtime Datatype
java.lang.Double

Definition
The double datatype corresponds to IEEE double-precision 64-bit floating point type [IEEE 754-1985].
The basic value space of double consists of the values m, where m is an integer whose absolute value is less
than 2^53, and e is an integer between -1075 and 970, inclusive. In addition to the basic value space
described above, the value space of double also contains the following special values: positive and negative
zero, positive and negative infinity and not-a-number.

The order-relation on double is: x < y if y - x is positive. Positive zero is greater than negative zero. Not-a-
number equals itself and is greater than all double values including positive infinity.

duration
Definition
duration represents a duration of time. The value space of duration is a six-dimensional space where the
coordinates designate the Gregorian year, month, day, hour, minute, and second components defined in
5.5.3.2 of [ISO 8601], respectively. These components are ordered in their significance by their order of
appearance i.e. as year, month, day, hour, minute, and second.

Creating User-Defined Datatypes
Datatype Definitions

7788 MetaBase Modeler User’s Guide, Release 4.2 SP2

ENTITIES
Runtime Datatype
java.lang.String

Definition
ENTITIES represents the ENTITIES attribute type from [XML 1.0 (Second Edition)]. The value space of
ENTITIES is the set of finite, non-zero-length sequences of ENTITYs that have been declared as unparsed
entities in a document type definition. The lexical space of ENTITIES is the set of white space separated
lists of tokens, of which each token is in the lexical space of ENTITY. The itemType of ENTITIES is
ENTITY.

ENTITY

Runtime Datatype
java.lang.String

Definition
ENTITY represents the ENTITY attribute type from [XML 1.0 (Second Edition)]. The value space of
ENTITY is the set of all strings that match the NCName production in [Namespaces in XML] and have
been declared as an unparsed entity in a document type definition. The lexical space of ENTITY is the set
of all strings that match the NCName production in [Namespaces in XML]. The base type of ENTITY is
NCName.

float
Runtime Datatype
java.lang.Float

Definition
float corresponds to the IEEE single-precision 32-bit floating point type [IEEE 754-1985]. The basic value
space of float consists of the values m, where m is an integer whose absolute value is less than 2^24, and e is
an integer between -149 and 104, inclusive. In addition to the basic value space described above, the value
space of float also contains the following special values: positive and negative zero, positive and negative
infinity and not-a-number. The order-relation on float is: x < y if y - x is positive. Positive zero is greater
than negative zero. Not-a-number equals itself and is greater than all float values including positive infinity.

Modeling User-Defined Functions

Datatype Definitions

 7799

gDay
Runtime Datatype
java.lang.String

Definition
gDay is a Gregorian day that recurs, specifically a day of the month such as the 5th of the month. Arbitrary
recurring days are not supported by this datatype. The value space of gDay is the space of a set of calendar
dates as defined in 3 of [ISO 8601]. Specifically, it is a set of one-day long, monthly periodic instances.

gMonth
Runtime Datatype
java.lang.String

Definition
gMonth is a Gregorian month that recurs every year. The value space of gMonth is the space of a set of
calendar months as defined in 3 of [ISO 8601]. Specifically, it is a set of one-month long, yearly periodic
instances.

gMonthDay
Runtime Datatype
java.lang.String

Definition
gMonthDay is a Gregorian date that recurs, specifically a day of the year such as the third of May. Arbitrary
recurring dates are not supported by this datatype. The value space of gMonthDay is the set of calendar
dates, as defined in 3 of [ISO 8601]. Specifically, it is a set of one-day long, annually periodic instances.

gYear
Runtime Datatype
java.lang.String

Definition
gYear represents a Gregorian calendar year. The value space of gYear is the set of Gregorian calendar years
as defined in 5.2.1 of [ISO 8601]. Specifically, it is a set of one-year long, non-periodic instances (e.g. lexical
1999 to represent the whole year 1999), independent of how many months and days this year has.

Creating User-Defined Datatypes
Datatype Definitions

8800 MetaBase Modeler User’s Guide, Release 4.2 SP2

gYearMonth
Runtime Datatype
java.lang.String

Definition
gYearMonth represents a specific Gregorian month in a specific Gregorian year. The value space of
gYearMonth is the set of Gregorian calendar months as defined in 5.2.1 of [ISO 8601]. Specifically, it is a
set of one-month long, non-periodic instances e.g. 1999-10 to represent the whole month of 1999-10,
independent of how many days this month has.

hexBinary
Runtime Datatype
java.lang.String

Definition
hexBinary represents arbitrary hex-encoded binary data. The value space of hexBinary is the set of finite-
length sequences of binary octets.

ID
Runtime Datatype
java.lang.String

Definition
ID represents the ID attribute type from [XML 1.0 (Second Edition)]. The value space of ID is the set of all
strings that match the NCName production in [Namespaces in XML]. The lexical space of ID is the set of
all strings that match the NCName production in [Namespaces in XML]. The base type of ID is NCName.

IDREF
Runtime Datatype
java.lang.String

Definition
IDREF represents the IDREF attribute type from [XML 1.0 (Second Edition)]. The value space of IDREF
is the set of all strings that match the NCName production in [Namespaces in XML]. The lexical space of
IDREF is the set of strings that match the NCName production in [Namespaces in XML]. The base type of
IDREF is NCName.

Modeling User-Defined Functions

Datatype Definitions

 8811

IDREFS
Runtime Datatype
java.lang.String

Definition
IDREFS represents the IDREFS attribute type from [XML 1.0 (Second Edition)]. The value space of
IDREFS is the set of finite, non-zero-length sequences of IDREFs. The lexical space of IDREFS is the set
of white space separated lists of tokens, of which each token is in the lexical space of IDREF. The
itemType of IDREFS is IDREF.

int
Runtime Datatype
java.lang.Integer

Definition
int is derived from long by setting the value of maxInclusive to be 2147483647 and minInclusive to be -
2147483648. The base type of int is long.

integer
Runtime Datatype
java.math.BigInteger

Definition
integer is derived from decimal by fixing the value of fractionDigits to be 0. This results in the standard
mathematical concept of the integer numbers. The value space of integer is the infinite set {...,-2,-1,0,1,2,...}.
The base type of integer is decimal.

language
Runtime Datatype
java.lang.String

Definition
language represents natural language identifiers as defined by [RFC 1766]. The value space of language is
the set of all strings that are valid language identifiers as defined in the language identification section of
[XML 1.0 (Second Edition)]. The lexical space of language is the set of all strings that are valid language
identifiers as defined in the language identification section of [XML 1.0 (Second Edition)]. The base type of
language is token.

Creating User-Defined Datatypes
Datatype Definitions

8822 MetaBase Modeler User’s Guide, Release 4.2 SP2

long
Runtime Datatype
java.lang.Long

Definition
long is derived from integer by setting the value of maxInclusive to be 9223372036854775807 and
minInclusive to be -9223372036854775808. The base type of long is integer.

Name
Runtime Datatype
java.lang.String

Definition
Name represents XML Names. The value space of Name is the set of all strings which match the Name
production of [XML 1.0 (Second Edition)]. The lexical space of Name is the set of all strings that match the
Name production of [XML 1.0 (Second Edition)]. The base type of Name is token.

NCName
Runtime Datatype
java.lang.String

Definition
NCName represents ML"non-colonized" Names. The value space of NCName is the set of all strings
which match the NCName production of [Namespaces in XML]. The lexical space of NCName is the set
of all strings that match the NCName production of [Namespaces in XML]. The base type of NCName is
Name.

negativeInteger
Runtime Datatype
java.math.BigInteger

Definition
negativeInteger is derived from nonPositiveInteger by setting the value of maxInclusive to be -1. This
results in the standard mathematical concept of the negative integers. The value space of negativeInteger is
the infinite set {...,-2,-1}. The base type of negativeInteger is nonPositiveInteger.

Modeling User-Defined Functions

Datatype Definitions

 8833

NMTOKEN
Runtime Datatype
java.lang.String

Definition
NMTOKEN represents the NMTOKEN attribute type from [XML 1.0 (Second Edition)]. The value
space of NMTOKEN is the set of tokens that match the Nmtoken production in [XML 1.0 (Second
Edition)]. The lexical space of NMTOKEN is the set of strings that match the Nmtoken production in
[XML 1.0 (Second Edition)]. The base type of NMTOKEN is token.

NMTOKENS
Runtime Datatype
java.lang.String

Definition
NMTOKENS represents the NMTOKENS attribute type from [XML 1.0 (Second Edition)].The value
space of NMTOKENS is the set of finite, non-zero-length sequences of NMTOKENs. The lexical space of
NMTOKENS is the set of white space separated lists of tokens, of which each token is in the lexical space
of NMTOKEN. The itemType of NMTOKENS is NMTOKEN.

nonNegativeInteger
Runtime Datatype
java.math.BigInteger

Definition
nonNegativeInteger is derived from integer by setting the value of minInclusive to be 0. This results in
the standard mathematical concept of the non-negative integers. The value space of nonNegativeInteger is
the infinite set {0,1,2,...}. The base type of nonNegativeInteger is integer.

nonPositiveInteger
Runtime Datatype
java.math.BigInteger

Definition
nonPositiveInteger is derived from integer by setting the value of maxInclusive to be 0. This results in the
standard mathematical concept of the non-positive integers. The value space of nonPositiveInteger is the
infinite set {...,-2,-1,0}. The base type of nonPositiveInteger is integer.

Creating User-Defined Datatypes
Datatype Definitions

8844 MetaBase Modeler User’s Guide, Release 4.2 SP2

normalizedString
Runtime Datatype
java.lang.String

Definition
normalizedString represents white space normalized strings. The value space of normalizedString is the set
of strings that do not contain the carriage return (#xD), line feed (#xA) nor tab (#x9) characters. The
lexical space of normalizedString is the set of strings that do not contain the carriage return (#xD) nor tab
(#x9) characters. The base type of normalizedString is string.

NOTATION
Runtime Datatype
java.lang.String

Definition
NOTATION represents the NOTATION attribute type from [XML 1.0 (Second Edition)]. The value
space of NOTATION is the set QNames. The lexical space of NOTATION is the set of all names of
notations declared in the current schema. NOTATION cannot be used directly in a model; rather a type
must be derived from it by specifying at least one enumeration facet whose value is the name of a
NOTATION declared in the model.

object
Runtime Datatype
java.lang.Object

Definition
object represents a java.lang.Object

positiveInteger

Runtime Datatype
java.math.BigInteger

Definition
positiveInteger is derived from nonNegativeInteger by setting the value ofminInclusive to be 1. This
results in the standard mathematical concept of the positive integer numbers. The value space of
positiveInteger is the infinite set {1,2,...}. The base type of positiveInteger is nonNegativeInteger.

Modeling User-Defined Functions

Datatype Definitions

 8855

QName
Runtime Datatype
java.lang.String

Definition QName represents XML qualified names. The value space of QName is the set of tuples
{namespace name, local part}, where namespace name is an anyURI and local part is an NCName. The
lexical space of QName is the set of strings that match the QName production of [Namespaces in XML].

short
Runtime Datatype
java.lang.Short

Definition
short is derived from int by setting the value of maxInclusive to be 32767 and minInclusive to be -32768.
The base type of short is int.

string
Runtime Datatype
java.lang.String

Definition
The string datatype represents character strings in XML. The value space of string is the set of finite-length
sequences of characters (as defined in [XML 1.0 (Second Edition)]) that match the Char production from
[XML 1.0 (Second Edition)]. A character is an atomic unit of communication; it is not further specified
except to note that every character has a corresponding Universal Character Set code point, which is an
integer.

time
Runtime Datatype
java.sql.Time

Definition
time represents an instant of time that recurs every day. The value space of time is the space of time of day
values as defined in 5.3 of [ISO 8601]. Specifically, it is a set of zero-duration daily time instances.

Creating User-Defined Datatypes
Datatype Definitions

8866 MetaBase Modeler User’s Guide, Release 4.2 SP2

timestamp
Runtime Datatype
java.sql.Timestamp

Definition
timestamp represents date that allows the JDBC API to identify this as an SQL TIMESTAMP value. It
adds the ability to hold the SQL TIMESTAMP nanos value and provides formatting and parsing operations
to support the JDBC escape syntax for timestamp values. Note: This type is a composite of a java.util.Date
and a separate nanoseconds value. Only integral seconds are stored in the java.util.Date component. The
fractional seconds - the nanos - are separate. The standard ANSI SQL timestamp format is YYYY-MM-
DD HH:MM:SS[.xxxxxxxxx] Hours are 24-hour time. The nanoseconds are optional.

token
Runtime Datatype
java.lang.String

Definition
token represents tokenized strings. The value space of token is the set of strings that do not contain the line
feed (#xA) nor tab (#x9) characters, that have no leading or trailing spaces (#x20) and that have no internal
sequences of two or more spaces. The lexical space of token is the set of strings that do not contain the line
feed (#xA) nor tab (#x9) characters, that have no leading or trailing spaces (#x20) and that have no internal
sequences of two or more spaces. The base type of token is normalizedString.

unsignedByte

Runtime Datatype
java.lang.Short

Definition
unsignedByte is derived from unsignedShort by setting the value of maxInclusive to be 255. The base type
of unsignedByte is unsignedShort.

unsignedInt
Runtime Datatype
java.lang.Long

Definition
unsignedInt is derived from unsignedLong by setting the value of maxInclusive to be 4294967295. The
base type of unsignedInt is unsignedLong.

Modeling User-Defined Functions

Datatype Definitions

 8877

unsignedLong
Runtime Datatype

java.math.BigInteger

Definition
unsignedLong is derived from nonNegativeInteger by setting the value of maxInclusive to be
18446744073709551615. The base type of unsignedLong is nonNegativeInteger.

unsignedShort
Runtime Datatype
java.lang.Integer

Definition
unsignedShort is derived from unsignedInt by setting the value of maxInclusive to be 65535. The base
type of unsignedShort is unsignedInt.

Creating User-Defined Datatypes
User-Defined Datatypes

8888 MetaBase Modeler User’s Guide, Release 4.2 SP2

USER-DEFINED DATATYPES
You can create fully functioning models for publication to the SearchBase or for creation of runtime
metadata with the MetaMatrix Server using only the built-in datatypes. In fact, any models that your
organization created prior to version 3.0 of the MetaMatrix System use these types exclusively.

However, there may be occasions when the built-in datatypes are not a good match (e.g. different lengths,
minimum lengths, patterns, etc.). In these instances you can create new datatypes, selecting the most
appropriate built-in or custom type of base type.

The MetaMatrix MetaBase Modeler lets you derive your own user-defined datatypes to extend or restrict the
built-in datatypes. When you create your own datatype, you must define a runtime type associated with it.
Your organization can create its own datatypes for use in models you publish to the SearchBase or use to
create runtime metadata.

WHY CREATE USER-DEFINED DATATYPES?
Because your organization can model its information sources using only the basic, built-in datatypes,
modeling user-defined datatypes might seem an extraneous step in creating metadata models to describe
your information systems and your data consumption. However, creating your own user-defined datatypes
offers your organization many benefits.

Formalizing a Data Dictionary
When you create user-defined datatypes, you can use them enterprise-wide to describe information more
distinctly. You can create datatypes that describe the nature of the information more completely than the
existing datatypes.

For example, when confronted with the ZIPCode column within the Address Book database, you can
model this information easily as a string or an integer; however, if your organization creates a derived
datatype called “ZIPCodeDT,” you and other data modelers within this organization can use this new
datatype specifically to model ZIP codes.

Describing Data Rules in Detail
By creating a custom user-defined datatypes, you can easily create rules that apply to information of that
datatype. You can set allowable values for that datatype by:

• Creating a pattern.
The pattern, a rule, describes the format of the data that the datatype can contain. For example,
for the ZIPCodeDT, you could set the allowable values to include 5 digits, or 9 digits, or 5
digits followed by a hyphen and then 4 more digits.

• Enumerating actual values.
Your datatype definition can include a list of actual values for the datatype. For example, you
could create a datatype called ZIPCodeStL to specify ZIP Codes in St. Louis, Missouri, and
establish that the allowable values for this datatype include 63043, 63141, 63104, and whatever
other values instances of this datatype can contain.

Modeling User-Defined Functions

Creating User-Defined Datatypes

 8899

Reusing Datatypes
Once you have created a user-defined datatype, you can reuse that definition throughout your metadata
models and in different metamodels. For example, you can not only model the ZIPCode column from the
Address Relational database, using the Relational metamodel, but you can also use the ZIPCodeDT to
model information within your XML data sources and others.

CREATING USER-DEFINED DATATYPES
When you model user-defined datatypes, you base your new datatype upon existing built-in datatypes or
other user-defined datatypes. This ensures that you can use information modeled using your user-defined
datatypes within your runtime metadata if you’re using the MetaMatrix Server for data access.

Deriving from Built-In Datatypes
The most basic datatype user-defined derive directly from the built-in datatypes. For example, the
ZIPCodeDT datatype relates directly to the integer built-in datatype. As such, it bears most of the
characteristics of the integer datatype, but extends or limits the integer to a specific purpose or content:

This new ZIPCodeDT represents an integer that has the pattern of having five numbers in it. When you
model a column as a ZIPCodeDT, it has all the characteristics of an integer but it only allow values
comprised of five-digit numbers.

Deriving from Other User-Defined Datatypes
Once you have created user-defined datatypes, you can further extend or limit those datatypes according to
your need. Again, your new user-defined datatypes bear the characteristics of the parent datatype and
ultimately the characteristics of the base datatype:

The ZIPCodeLA and ZIPCodeChi datatypes both have the same patterns as their parent datatype,
ZIPCodeDT, but each limits the allowed values, by enumeration, to certain literal values. Ultimately, both
share characteristics of the built-in integer datatype.

Creating User-Defined Datatypes
Modeling the User-Defined Datatypes

9900 MetaBase Modeler User’s Guide, Release 4.2 SP2

MODELING THE USER-DEFINED DATATYPES
Within the MetaBase Modeler, you define your user-defined datatypes in a metadata model. You can then
include this metadata model in projects with your other physical or virtual metadata models to use your
user-defined datatypes within those metadata models.

Each datatype model can contain one or more user-defined datatypes. A complete set of your organization’s
datatypes, contained within a metadata model, can be a complete data dictionary for your organization,
providing users a single place to learn about your site’s information types.

Creating the Datatype Model
You can create a datatype model the same way that you create physical or virtual models from other
metamodels. Your datatype model, however, is a physical model to include in projects where you want to
use the models.

To create a derived datatype model:

1. From the menu, select New > Metadata Model.

2. Click the Next button. Enter a File Name. Select the Metamodel type XML Schema (XSD).
The Model Type defaults to Datatype Model.

Modeling User-Defined Functions

Modeling the User-Defined Datatypes

 9911

3. Click the Finish button.

4. Next you are presented with a selection menu for the version of XML schema being applied.

5. By right-clicking on the schema diagram in the Editor Panel, you can select New Child and
then add atomic, list, union datatypes, and a host of other definition types.

 9922

CChhaapptteerr 99::
CCrreeaattiinngg aanndd EEddiittiinngg MMeettaa OObbjjeeccttss

CREATING META OBJECTS
When you model your existing data sources or create your transformed virtual classes, you need to create
meta objects to represent the information.

You can create these meta objects in the following ways:

• Using the Model Explorer view to create the meta objects. This method organizes the meta
objects in a hierarchical fashion, offering a quick way to start your metadata model. For more
information, see “Creating Meta Objects on the Model Explorer View.”

• Using the Table Editor to rapidly enter multiple meta objects.

• Using diagrams in the Editor Panel view.

Modeling User-Defined Functions

Creating Meta Objects on the Model Explorer View

 9933

CREATING META OBJECTS ON THE MODEL EXPLORER
VIEW

You can create meta objects directly on the Model Explorer view. The MetaBase Modeler constrains the
types of meta objects you can create based upon the meta object you select and the metamodel of the
metadata model in which you want to create the new meta object. You cannot create a Column attribute in
a Stored Procedure class, nor can you create a Column meta object in a model based on the Data Access
metamodel.

To create meta objects on the Model Explorer view:

1. Select the parent meta object to which you want to add a child. For example, you can add a
package to a package or an attribute to a class.

2. Right-click on the meta object. From the pop-up menu, select New Child. You can now select
the meta object you would like to add.

3. The new meta object displays on the Model Explorer view.

4. The new object is highlighted for renaming.

Creating and Editing Meta Objects
Viewing Meta Objects in the Table Editor

9944 MetaBase Modeler User’s Guide, Release 4.2 SP2

VIEWING META OBJECTS IN THE TABLE EDITOR
Using the Table Editor

The MetaBase Modeler includes a table-based meta object viewer and editor, called the Table Editor.
Using the Table Editor, you can review meta objects, edit existing meta objects, and create new objects
quickly in the Editor Panel view.

To open the Table Editor:

1. On the Model Explorer or Outline tab, select the model or meta objects you want to view or
edit in the table.

2. Switch the Editor Panel view to the Table Editor view by clicking the tab at the bottom of
the view.

The tabs that display depend upon the model’s metamodel and the contents of each
metamodel.

3. Once you have opened the Table Editor, you can:

• Edit the existing properties. For more information, see “Editing Meta Objects in the Table
Editor.”

• Add a new meta object. For more information, see “Creating Meta Objects in the Table
Editor.”

• Add meta objects from your workspace to the table.

• Paste meta object information from your clipboard into the table. For more information,
see “Pasting into the Table Editor.”

• Print your tables.

Modeling User-Defined Functions

Viewing Meta Objects in the Table Editor

 9955

Editing Meta Objects in the Table Editor
You can use the Table Editor to edit properties of a metaobject in the table.

Typically, you can edit properties that use an edit box or a drop-down list to enter their values on the
Properties view, such as Datatype and Name In Source. You cannot edit business metadata, such as
keywords or descriptions.

To edit meta objects in a table:

1. On the Model Explorer view, select the meta objects you want to view or edit in the table.

2. From the Editor Panel view, select the tab to toggle on the Table Editor.

3. The Table Editor displays the contents of each metamodel. This sample displays a model
using the Relational metamodel:

4. You can click certain properties and manually edit them in the Table Editor.

5. The changes you make impact your model.

Creating and Editing Meta Objects
Viewing Meta Objects in the Table Editor

9966 MetaBase Modeler User’s Guide, Release 4.2 SP2

Creating Meta Objects in the Table Editor
You can create meta objects in the Table View. When you create a meta object, you create it as a sibling of
other meta objects in the table; it is the same type of meta object as the tab you are viewing and belongs to
the same parent meta object.

For example, if you are reviewing columns in the table, you can add other columns, and they will belong to
the same parent base table, view, or result set as the others in the table. If your table displays more than one
set of columns, belonging to more than one parent class, you can select in which class you want to create
the new column.

To create meta objects in a table:

1. On the Model Explorer view, select the meta objects you want to view in the table.

2. Switch the Editor Panel view to the Table Editor view by clicking the tab at the bottom of
the view.

3. The Table Editor displays details for the meta object you selected.

4. Click the tab of the meta object type you want to add.

5. In the table, click a child of the parent meta object to which you want to add the new meta
object.

Modeling User-Defined Functions

Viewing Meta Objects in the Table Editor

 9977

6. From the Editor Panel view, right-click on metadata in the Name column. Select Insert Rows
from the drop-down menu.

7. You also can use the Insert Rows into Table button in the top menu bar of the modeler.

8. In the Insert Rows dialog box, use the up and down arrow buttons to enter the number of
rows you want to insert.

9. Click OK. A new row displays immediately beneath the row you clicked.

You can edit the properties of this new meta object. The new meta object becomes part of your model; you
will see it in your workspace when you exit the Table Editor.

Creating and Editing Meta Objects
Viewing Meta Objects in the Table Editor

9988 MetaBase Modeler User’s Guide, Release 4.2 SP2

Pasting into the Table Editor
If you have a Microsoft Excel spreadsheet or other file that contains meta object property information, you
can copy that information onto your operating system’s clipboard and paste the information into the Table
Editor.

The contents of this file must be tab-separated, but not comma-separated. The MetaBase Modeler will paste
this information as metamodel-specific meta objects of a certain type, determined by the tab onto which
you paste this information.

This paste function enables you to paste a block of contiguous rows and columns of property values into
the table. This means you can populate many columns of information, not necessarily all. For example, if
you have a spreadsheet containing meta object Names, Datatypes, and Descriptions, you can arrange your
table and paste only that information into the table and can set other property values later. You cannot,
however, paste namespace or location information into the table.

To paste items from the clipboard:

1. Toggle your Editor Panel to Table Editor using the tab at the bottom of the view.

2. Copy the information for the meta objects you want to create onto the system clipboard from
Microsoft Excel.

3. Click the tab that corresponds to the meta object type this information represents. For
example, to paste classes, click the Base Tables, Views, or Groups tab.

4. From the Editor Panel view, select Insert Rows. Repeat this step once for each row you want
to paste; if you copied 20 rows to the clipboard, you must insert 20 rows.

5. Click the first of the new rows in the left-most column, typically Name.

6. From the Editor Panel view, select Paste Clipboard Contents into Table.

The rows you selected display in the model. These new meta objects become a part of your metadata model.
You can create relationships, derive virtual metadata, and use these meta objects as any others.

You might encounter difficulties if you try to paste too many rows or if you try to paste invalid information.

Modeling User-Defined Functions

Viewing Meta Objects in the Table Editor

 9999

Pasting Too Many Rows
Your paste operation might encounter problems if you attempt to paste more rows than you have created
new rows. If you do, the Reconcile Clipboard Paste dialog box displays.

You can click OK to paste the information anyway; this discards the information that is highlighted. Or you
can click Cancel and alter either your existing table by adding rows for that information, or the dimensions
of the data you are importing.

Other Limitations
There is no ability to re-order table columns once they have been imported. All modifications must be
done in Microsoft Excel prior to the cut-and-paste.

The Table Editor feature is not designed for creating new objects. This means that you cannot “paste” an
entirely new object, specifying its parent name.

Location is not a valid paste field. You cannot change an object’s parent in the table.

Since each tab is only one entity type (one for tables, one for columns), it is problematic to build an entire
model by cutting and pasting spreadsheets.

Table Editor Column Sorting and Hiding
You can specify the order of columns in the table editor. You can also hide columns. Settings become
available for a specific table type after it has been opened once. These settings can be accessed in one of
two ways. First, you can navigate to MetaBase Modeler Preferences > Editor in the preferences dialog.

Creating and Editing Meta Objects
Viewing Meta Objects in the Table Editor

110000 MetaBase Modeler User’s Guide, Release 4.2 SP2

There will be a two tabs present, one for Tables and one for Transformations with the new settings on
the Tables tab.

The settings can also be accessed by right-clicking on the table editor and selecting Table Editor
Preferences. Table types with columns available for preference settings are shown in the left hand column.

Modeling User-Defined Functions

Editing Meta Object Properties

 110011

Individual columns are shown for the selected table type in the right hand column. Clicking on the yes or
no option next to the column name determines column visibility. Column order is changed by selecting a
column and using the up and down buttons next to the column list to change its order. Selecting the
Restore Defults button resets the default order and visibility of columns for a particular table. Note that
there is no Restore Defaults button on the dialog presented with the right-click method. You can still
restore defaults by selecting the table in the left hand column, right-clicking, and choosing the Restore
Defaults menu option. Either method will cause the table to be removed from the preferences list. The
table will not reappear until you have opened a new editor that contains that specific table type.

EDITING META OBJECT PROPERTIES
In addition to the Table Editor, you can use the Properties tab of the Properties view to change a meta
object’s properties. To edit a meta object’s properties on the Properties view:

1. On the Model Explorer tab, select the meta object you want to modify.

NOTE: You can also select a meta object in the Editor Panel view.

2. The properties display on the Properties view. The names and natures of the properties
depend upon the type of meta object you selected.

3. Click the value beside the property you want to change and type the new value.

Creating and Editing Meta Objects
Manipulating Meta Objects

110022 MetaBase Modeler User’s Guide, Release 4.2 SP2

4. Note that some properties are read-only; you cannot select or modify all properties. The
MetaBase Modeler saves the changes you have made to your local directory. Remember, the
changes you make do not reside in the MetaBase Repository until you add the model or check
in your changes using the MetaBase Repository Manager.

Materialized Views
There is a new property on virtual tables named Materialized. Setting this property's value to true (the
default is false) allows the data generated for this Virtual table to be stored as a materialized view using the
MetaMatrix Server.

Restore Default Values
There is a Restore Default Value button in the properties toolbar. Clicking this button (when active) will
reset the highlighted property to its default null value.

MANIPULATING META OBJECTS
Once you create meta objects in one or more metadata models, the MetaBase Modeler provides you several
handy ways to manipulate them. The MetaBase Modeler supports the common functions of cut, copy, and
paste, but also adds a special clone function to

You can:

• Cut a meta object and its children from their current location and place it on the clipboard to
paste elsewhere.

• Copy a meta object and its children, leaving it in the current location and placing a copy of it
on the clipboard to paste elsewhere.

• Paste a cut or copied meta object and its children into a different location.

• Paste a cut or copied meta object and its children into a different location in a different
metamodel. For more information, see “Pasting Meta Objects.”

• Clone a meta object and its children, placing a copy of the meta object and its children in the
same location, so that the copied meta object is a sibling to that which it copies.

	Modeling Data
	The Business Challenge
	The MetaMatrix Solution
	The MetaMatrix System

	What is Metadata?
	Editing Metadata Vs. Editing Data
	Metadata Models
	Business and Technical Metadata
	Technical Metadata
	Business Metadata

	Physical and Virtual Metadata
	What Is An Enterprise Information System?
	Modeling Your Enterprise Information Systems
	Modeling Your Enterprise Data Needs

	Modeling Metadata Transformations
	Metadata Transformations
	SQL in Transformations
	Mapping XML Transformations

	Design-Time and Runtime Metadata
	Design-Time Metadata
	Runtime Metadata

	Metamodels in the MetaBase Modeler
	What is a Metamodel?
	Metamodels in the MetaBase Modeler
	Metamodel Extensibility
	Available Metamodel Types
	The Relational Metamodel
	The Data Access Metamodel
	The XML Metamodels
	Choosing a Metamodel

	Getting Started with the MetaBase Modeler
	What is the MetaBase Modeler?
	Using the MetaBase Modeler Workspace
	Modeling Metadata Locally
	Opening the MetaBase Modeler Workspace Window
	Running the Application

	Viewing the MetaBase Modeler Workspace Window
	Workspaces and Projects

	Modeling Your Metadata

	Creating Metadata Models
	Create a Project
	Creating a New Physical Model
	Creating a New Virtual Model
	Creating a New Virtual Model from an Existing Model
	Copying an Existing Workspace Model
	Closing a Project

	Importing Metadata
	The Metadata Import Wizard
	Purpose of the Wizard
	Import Plug-in Extensibility

	Importing an XML Schema Document
	Importing from a MetaMatrix Model File
	Quick Import and Copy of Existing Metamodels and XML Schema Documents
	Copy and Paste Method

	Importing from a JDBC Database
	Using the Metadata Import Wizard

	Importer for ERwin 3.5.2 Models
	Importer for Rational Rose Models
	Adding Relationships to UML Models

	Connection Information in Metadata Models
	Connection-Related Meta Objects
	Refreshing Metadata

	Navigating Metadata
	Navigating the Model/Explorer Tree
	Buttons in the Model Explorer View
	Icons in the Model Explorer View

	Creating User-Defined Datatypes
	What are Datatypes?
	Built-In Datatypes
	Built-in Datatypes with Runtime Types
	Datatype Definitions
	anyURI
	Runtime Datatype
	Definition

	base64Binary
	Runtime Datatype
	Definition

	bigdecimal
	Runtime Datatype
	Definition

	Biginteger
	Runtime Datatype
	Definition

	blob
	Runtime Datatype
	Definition

	boolean
	Runtime Datatype
	Definition

	byte
	Runtime Datatype
	Definition

	char
	Runtime Datatype
	Definition

	clob
	Runtime Datatype
	Definition

	date
	Runtime Datatype
	Definition

	dateTime
	Runtime Datatype
	Definition

	decimal
	Runtime Datatype
	Definition

	double
	Runtime Datatype
	Definition

	duration
	Definition

	ENTITIES
	Runtime Datatype
	Definition

	ENTITY
	Runtime Datatype
	Definition

	float
	Runtime Datatype
	Definition

	gDay
	Runtime Datatype
	Definition

	gMonth
	Runtime Datatype
	Definition

	gMonthDay
	Runtime Datatype
	Definition

	gYear
	Runtime Datatype
	Definition

	gYearMonth
	Runtime Datatype
	Definition

	hexBinary
	Runtime Datatype
	Definition

	ID
	Runtime Datatype
	Definition

	IDREF
	Runtime Datatype
	Definition

	IDREFS
	Runtime Datatype
	Definition

	int
	Runtime Datatype
	Definition

	integer
	Runtime Datatype
	Definition

	language
	Runtime Datatype
	Definition

	long
	Runtime Datatype
	Definition

	Name
	Runtime Datatype
	Definition

	NCName
	Runtime Datatype
	Definition

	negativeInteger
	Runtime Datatype
	Definition

	NMTOKEN
	Runtime Datatype
	Definition

	NMTOKENS
	Runtime Datatype
	Definition

	nonNegativeInteger
	Runtime Datatype
	Definition

	nonPositiveInteger
	Runtime Datatype
	Definition

	normalizedString
	Runtime Datatype
	Definition

	NOTATION
	Runtime Datatype
	Definition

	object
	Runtime Datatype
	Definition

	positiveInteger
	Runtime Datatype
	Definition

	QName
	Runtime Datatype

	short
	Runtime Datatype
	Definition

	string
	Runtime Datatype
	Definition

	time
	Runtime Datatype
	Definition

	timestamp
	Runtime Datatype
	Definition

	token
	Runtime Datatype
	Definition

	unsignedByte
	Runtime Datatype
	Definition

	unsignedInt
	Runtime Datatype
	Definition

	unsignedLong
	Definition

	unsignedShort
	Runtime Datatype
	Definition

	User-Defined Datatypes
	Why Create User-Defined Datatypes?
	Formalizing a Data Dictionary
	Describing Data Rules in Detail
	Reusing Datatypes

	Creating User-Defined Datatypes
	Deriving from Built-In Datatypes
	Deriving from Other User-Defined Datatypes

	Modeling the User-Defined Datatypes
	Creating the Datatype Model

	Creating and Editing Meta Objects
	Creating Meta Objects
	Creating Meta Objects on the Model Explorer View
	Viewing Meta Objects in the Table Editor
	Using the Table Editor
	Editing Meta Objects in the Table Editor
	Creating Meta Objects in the Table Editor
	Pasting into the Table Editor
	Pasting Too Many Rows
	Other Limitations

	Table Editor Column Sorting and Hiding

	Editing Meta Object Properties
	Materialized Views
	Restore Default Values

	Manipulating Meta Objects
	What is the Clipboard?
	Cutting Meta Objects
	Copying Meta Objects
	Cloning Meta Objects
	Pasting Meta Objects
	Reordering Meta Objects

	Adding Descriptions to Meta Objects
	Using Diagrams in the MetaBase Modeler
	What Are Diagrams?
	What is a Package Diagram?
	What is a Transformation Diagram?
	What is a Dependency Diagram?
	What is a Mapping Diagram?
	What is an XML Transformation Diagram?
	What is a Custom Diagram?

	Viewing a Diagram
	Opening a Diagram
	Diagramming Tasks

	Components of the Diagram
	Models
	Categories, Schema, and Catalogs
	Groups, Base Tables, and Views
	Virtual Groups, Base Tables, and Views
	Mapping Classes
	Staging Tables for XML Documents
	Procedures
	Input Sets
	Elements and Columns
	Primary Keys
	Foreign Keys
	Unique Constraints
	Access Patterns
	Links
	Transformation
	XML Fragment Link
	XML Mapping Link

	Navigating the Diagram
	The Outline View and Diagram Thumbnail

	Modeling Data in a Diagram
	Creating Meta Objects in the Diagram
	Creating a New Package in the Editor Panel View
	Creating a New Class in the Editor Panel View
	Creating a New Attribute in the Editor Panel View

	Creating Relationships
	Creating Custom Diagrams
	Creating and Populating a Blank Custom Diagram
	Creating a New Custom Diagram from a Model or Table

	Modeling Transformations
	What Is Virtual Metadata?
	Metadata Abstraction in the Modeler
	Virtual Attributes
	Basic Virtual Attributes
	Transforming Attributes

	Virtual Classes
	Creating Views with Virtual Classes
	Creating Unions with Virtual Classes

	Virtual Metadata and Data Access
	Integration with the MetaMatrix Server
	Integration with the MetaMatrix XA Server

	Creating a Transformation
	Creating a Simple Transformation
	Creating a Union Transformation
	Example: Union of Two or More Source Tables with Compatible Column Data
	Example: Add As Union Source table to reconciled/valid Non-Union Query

	Using the Transformation Editor
	Enabling or Disabling Transformation Types
	Removing Transformation Sources
	Using the Criteria Builder
	Using the Expression Builder
	Expanding a Select Clause
	Searching and Replacing in a Transformation
	Validating Your Transformation
	Reconciling Target Attributes
	Setting Transformation Editor Preferences
	Using Short SQL Symbol Names

	Procedural-to-relational Mapping
	Creating Procedures for Updates
	How an Update Procedure Works
	Procedure Language Basic Structure
	Procedure Statements
	Command Statement
	DECLARE Statement
	Assignment Statement
	IF Statement
	ERROR Statement

	Special Variables
	INPUT Variables
	CHANGING Variables
	The ROWS_UPDATED Variable

	Processing SQL Criteria in a User’s Command
	HAS CRITERIA
	TRANSLATE CRITERIA

	A Sample Procedure
	Insert
	Update
	Delete

	Use Default Procedure

	Virtual Procedures
	Virtual Procedure Language Basic Structure
	Statements Not Used in Virtual Procedures
	Statements Used in Virtual Procedures
	Command Statement
	DECLARE Statement
	Assignment Statement
	IF Statement
	LOOP Statement
	WHILE Statement
	CONTINUE Statement
	BREAK Statement
	SELECT INTO Statement
	ERROR Statement

	Processing Procedure Inputs
	Sample Virtual Procedures

	Adding Duplicate Objects to a Transformation Diagram
	Viewing Dependency Diagrams

	Mapping Other Data Sources to XML
	Why Map Non-XML Sources to XML?
	XML Schema and XML Documents
	The Types of XML Files
	XML Files and Metadata Models

	Mapping Sources to XML Documents
	Using XML Schema Files and Documents
	Importing XML Schema Metadata
	Creating an XML Schema Metadata Model

	Creating a Virtual XML Document Model
	Creating New Models from XML Schema
	Creating a Limited Document Model
	Creating a Simple XML Document
	Working With XML Document Models

	Identifying Namespaces
	Namespacing for Global Elements
	Namespacing for Local Elements
	Default Namespace
	Namespace with Declared Prefix
	Qualification with Default Namespaces
	All Elements Qualified

	What Are Mapping Diagrams?
	Reviewing a Mapping Diagram
	Reviewing an XML Transformation Diagram

	Using Mapping Classes
	Automatically Generating Mapping Links
	Adding a Mapping Class
	Merging Mapping Classes
	Splitting Mapping Classes
	Deleting Mapping Classes
	Adding Attributes to Mapping Classes
	Deleting Attributes from Mapping Classes

	Repeating Tags in XML Without Mapping Classes
	Creating Transformations and Mappings
	Creating XML Transformations

	Using the Input Set
	Role of the Input Set
	Using the Input Set Editor

	Using the Recursion Editor
	Handling Recursive XML Schema
	Using the Recursion Editor

	Using the Choice Editor
	Opening the Choice Editor
	Excluding Options
	Editing the Choice Criteria
	Setting Choice Element Order
	Setting a Default Choice Action

	Using a Staging Table
	Improving Data Access with Staging Tables
	Using Staging Tables
	Creating a Staging Table
	Populating a Staging Table
	Using Input Sets with Staging Tables
	Using Staging Tables in XML Transformations
	Removing a Staging Table
	Deleting a Staging Table

	Creating a Virtual Database
	Creating a Virtual Database Definition
	Synchronizing

	Modeling for Information Integration
	Special Considerations for Information Integration
	Establishing Access Patterns
	What is an Access Pattern?
	Inserting an Access Pattern Meta Object

	Creating Procedures
	A Sample Procedure
	Modeling a Procedure

	Using the Metadata Tools
	Viewing Datatypes
	Viewing the Data Dictionary

	Error Analysis and Rebuilding the Project
	Setting Validation Preferences
	Manual Error Analysis

	Comparing a Model to Its Last Save
	Modeler Command Line Application
	Comparing Models
	Refreshing Imported Models

	Managing The Workspace
	Exporting DDL Models
	Exporting a DDL File

	Editing User Preferences
	Editing General Preferences
	Editing Debug Preferences
	Editing Diagram Preferences
	Editing Editors Preferences
	Editing Validation Preferences
	Preferences Tabs from Plug-ins

	MetaBase Repository and the Team Repository
	Sharing Projects and Files
	The MetaBase Repository View
	Sharing a Project or Model
	Unsharing a Project
	Adding a Project or Model to a Shared Team Repository
	Get the Latest Version
	Checking Models and Projects Out and Back In to the Team Repository
	Showing Iteration Histories
	Repository Properties

	Modeling User-Defined Functions
	Extending Metamodels
	What is a Metamodel Extension?
	Creating an Extension Model
	Adding a Class Extension to the Extension Model
	Adding Attributes to the Class Extension
	Creating an Extension Enumeration

	Applying an Extension Model to a Metadata Model
	Metamodel Extensions in the Server

	�JDBC Imports and Built-in Datatypes
	The Significance of Datatypes in an Imported JDBC Database

	Model Property Values
	File/Model Properties

	Modeling Generic Relationships
	Creating Generic Relationships

